<p>Istraživanja predstavljena u disertaciji imala su za cilj razvoj nove metode bazirane na dubokim konvolucijskim neuoronskim mrežama u cilju detekcije bolesti biljaka na osnovu slike lista. U okviru eksperimentalnog dela rada prikazani su dosadašnji literaturno dostupni pristupi u automatskoj detekciji bolesti biljaka kao i ograničenja ovako dobijenih modela kada se koriste u prirodnim uslovima. U okviru disertacije uvedena je nova baza slika listova, trenutno najveća po broju slika u poređenju sa javno dostupnim bazama, potvrđeni su novi pristupi augmentacije bazirani na GAN arhitekturi nad slikama listova uz novi specijalizovani dvo-koračni pristup kao potencijalni odgovor na nedostatke postojećih rešenja.</p> / <p>The research presented in this thesis was aimed at developing a novel method based on deep convolutional neural networks for automated plant disease detection. Based on current available literature, specialized two-phased deep neural network method introduced in the experimental part of thesis solves the limitations of state-of-the-art plant disease detection methods and provides the possibility for a practical usage of the newly developed model. In addition, a new dataset was introduced, that has more images of leaves than other publicly available datasets, also GAN based augmentation approach on leaves images is experimentally confirmed.</p>
Identifer | oai:union.ndltd.org:uns.ac.rs/oai:CRISUNS:(BISIS)114816 |
Date | 07 October 2020 |
Creators | Arsenović Marko |
Contributors | Sladojević Srđan, Stefanović Darko, Anderla Andraš, Ivanišević Dragoslav, Rakić Aleksandar |
Publisher | Univerzitet u Novom Sadu, Fakultet tehničkih nauka u Novom Sadu, University of Novi Sad, Faculty of Technical Sciences at Novi Sad |
Source Sets | University of Novi Sad |
Language | Serbian |
Detected Language | Unknown |
Type | PhD thesis |
Page generated in 0.0015 seconds