Detekce objektů v počítačovém vidění je složítá úloha. Velmi populární a rozšířená metoda pro detekci je využití statistických klasifikátorů a skenovacích oken. Pro učení kalsifikátorů se často používá algoritmus AdaBoost (nebo jeho modifikace), protože dosahuje vysoké úspěšnosti detekce, nízkého počtu chybných detekcí a je vhodný pro detekci v reálném čase. Implementaci detekce objektů je možné provést různými způsoby a lze využít vlastnosti konkrétní architektury, pro urychlení detekce. Pro akceleraci je možné využít grafické procesory, vícejádrové architektury, SIMD instrukce, nebo programovatelný hardware. Tato práce představuje metodu optimalizace, která vylepšuje výkon detekce objektů s ohledem na cenovou funkci zadanou uživatelem. Metoda rozděluje předem natrénovaný klasifikátor do několika různých implementací, tak aby celková cena klasifikace byla minimalizována. Metoda je verifikována na základním experimentu, kdy je klasifikátor rozdělen do předzpracovací jednotku v FPGA a do jednotky ve standardním PC.
Identifer | oai:union.ndltd.org:nusl.cz/oai:invenio.nusl.cz:261269 |
Date | January 2012 |
Creators | Juránek, Roman |
Contributors | Kälviäinen, Heikki, Sojka, Eduard, Zemčík, Pavel |
Publisher | Vysoké učení technické v Brně. Fakulta informačních technologií |
Source Sets | Czech ETDs |
Language | English |
Detected Language | Unknown |
Type | info:eu-repo/semantics/doctoralThesis |
Rights | info:eu-repo/semantics/restrictedAccess |
Page generated in 0.0019 seconds