Return to search

Détection de changements à partir de nuages de points de cartographie mobile / Change detection from mobile laser scanning point clouds

Les systèmes de cartographie mobile sont de plus en plus utilisés pour la cartographie des scènes urbaines. La technologie de scan laser mobile (où le scanner est embarqué sur un véhicule) en particulier permet une cartographie précise de la voirie, la compréhension de la scène, la modélisation de façade, etc. Dans cette thèse, nous nous concentrons sur la détection de changement entre des nuages de points laser de cartographie mobile. Tout d'abord, nous étudions la détection des changements a partir de données RIEGL (scanner laser plan) pour la mise à jour de bases de données géographiques et l'identification d'objet temporaire. Nous présentons une méthode basée sur l'occupation de l'espace qui permet de surmonter les difficultés rencontrées par les méthodes classiques fondées sur la distance et qui ne sont pas robustes aux occultations et à l'échantillonnage anisotrope. Les zones occultées sont identifiées par la modélisation de l'état d'occupation de l'espace balayé par des faisceaux laser. Les écarts entre les points et les lignes de balayage sont interpolées en exploitant la géométrie du capteur dans laquelle la densité d'échantillonnage est isotrope. Malgré quelques limites dans le cas d'objets pénétrables comme des arbres ou des grilles, la méthode basée sur l'occupation est en mesure d'améliorer la méthode basée sur la distance point à triangle de façon significative. La méthode de détection de changement est ensuite appliquée à des données acquises par différents scanners laser et à différentes échelles temporelles afin de démontrer son large champs d'application. La géométrie d'acquisition est adaptée pour un scanner dynamique de type Velodyne. La méthode basée sur l'occupation permet alors la détection des objets en mouvement. Puisque la méthode détecte le changement en chaque point, les objets en mouvement sont détectés au niveau des points. Comme le scanner Velodyne scanne l'environnement de façon continue, les trajectoires des objets en mouvement peut être extraite. Un algorithme de détection et le suivi simultané est proposé afin de retrouver les trajectoires de piétons. Cela permet d'estimer avec précision la circulation des piétons des circulations douces dans les lieux publics. Les changements peuvent non seulement être détectés au niveau du point, mais aussi au niveau de l'objet. Ainsi nous avons pu étudier les changements entre des voitures stationnées dans les rues à différents moments de la journée afin d'en tirer des statistiques utiles aux gestionnaires du stationnement urbain. Dans ce cas, les voitures sont détectés en premier lieu, puis les voitures correspondantes sont comparées entre des passages à différents moments de la journée. Outre les changements de voitures, l'offre de stationnement et les types de voitures l'utilisant sont également des informations importantes pour la gestion du stationnement. Toutes ces informations sont extraites dans le cadre d'un apprentissage supervisé. En outre, une méthode de reconstruction de voiture sur la base d'un modèle déformable générique ajusté aux données est proposée afin de localiser précisément les voitures. Les paramètres du modèle sont également considérés comme caractéristiques de la voiture pour prendre de meilleures décisions. De plus, ces modèles géométriquement précis peuvent être utilisées à des fins de visualisation. Dans cette thèse, certains sujets liés à la détection des changements comme par exemple, suivi, la classification, et la modélisation sont étudiés et illustrés par des applications pratiques. Plus important encore, les méthodes de détection des changements sont appliquées à différentes géométries d'acquisition de données et à de multiples échelles temporelles et au travers de deux stratégies: “bottom-up” (en partant des points) et “top-down” (en partant des objets) / Mobile mapping systems are increasingly used for street environment mapping, especially mobile laser scanning technology enables precise street mapping, scene understanding, facade modelling, etc. In this research, the change detection from laser scanning point clouds is investigated. First of all, street environment change detection using RIEGL data is studied for the purpose of database updating and temporary object identification. An occupancy-based method is presented to overcome the challenges encountered by the conventional distance-based method, such as occlusion, anisotropic sampling. Occluded areas are identified by modelling the occupancy states within the laser scanning range. The gaps between points and scan lines are interpolated under the sensor reference framework, where the sampling density is isotropic. Even there are some conflicts on penetrable objects, e.g. trees, fences, the occupancy-based method is able to enhance the point-to-triangle distance-based method. The change detection method is also applied to data acquired by different laser scanners at different temporal-scales with the intention to have wider range of applications. The local sensor reference framework is adapted to Velodyne laser scanning geometry. The occupancy-based method is implemented to detection moving objects. Since the method detects the change of each point, moving objects are detect at point level. As the Velodyne scanner constantly scans the surroundings, the trajectories of moving objects can be detected. A simultaneous detection and tracking algorithm is proposed to recover the pedestrian trajectories in order to accurately estimate the traffic flow of pedestrian in public places. Changes can be detected not only at point level, but also at object level. The changes of cars parking on street sides at different times are detected to help regulate on-street car parking since the parking duration is limited. In this case, cars are detected in the first place, then they are compared with corresponding ones. Apart from car changes, parking positions and car types are also important information for parking management. All the processes are solved in a supervised learning framework. Furthermore, a model-based car reconstruction method is proposed to precisely locate cars. The model parameters are also treated as car features for better decision making. Moreover, the geometrically accurate models can be used for visualization purposes. Under the theme of change detection, related topics, e.g. tracking, classification, modelling, are also studied for the reason of practical applications. More importantly, the change detection methods are applied to different data acquisition geometries at multiple temporal-scales. Both bottom-up (point-based) and top-down (object-based) change detection strategies are investigated

Identiferoai:union.ndltd.org:theses.fr/2015PESC1125
Date12 November 2015
CreatorsXiao, Wen
ContributorsParis Est, Paparoditis, Nicolas
Source SetsDépôt national des thèses électroniques françaises
LanguageEnglish
Detected LanguageFrench
TypeElectronic Thesis or Dissertation, Text

Page generated in 0.003 seconds