Return to search

Développement d'un système de tracking vidéo sur caméra robotisée / Development of a video tracking system on a robotic camera

Ces dernières années se caractérisent par la prolifération des systèmes de vidéo-surveillance et par l’automatisation des traitements que ceux-ci intègrent. Parallèlement, le problème du suivi d’objets est devenu en quelques années un problème récurrent dans de nombreux domaines et notamment en vidéo-surveillance. Dans le cadre de cette thèse, nous proposons une nouvelle méthode de suivi d’objet, basée sur la méthode Ensemble Tracking et intégrant deux améliorations majeures. La première repose sur une séparation de l’espace hétérogène des caractéristiques en un ensemble de sous-espaces homogènes appelés modules et sur l’application, sur chacun d’eux, d’un algorithme basé Ensemble Tracking. La seconde adresse, quant à elle, l’apport d’une solution à la nouvelle problématique de suivi induite par cette séparation des espaces, à savoir la construction d’un filtre particulaire spécifique exploitant une pondération des différents modules utilisés afin d’estimer à la fois, pour chaque image de la séquence, la position et les dimensions de l’objet suivi, ainsi que la combinaison linéaire des différentes décisions modulaires conduisant à l’observation la plus discriminante. Les différents résultats que nous présentons illustrent le bon fonctionnement global et individuel de l’ensemble des propriétés spécifiques de la méthode et permettent de comparer son efficacité à celle de plusieurs algorithmes de suivi de référence. De plus, l’ensemble des travaux a fait l’objet d’un développement industriel sur les consoles de traitement de la société partenaire. En conclusion de ces travaux, nous présentons les perspectives que laissent entrevoir ces développements originaux, notamment en exploitant les possibilités offertes par la modularité de l’algorithme ou encore en rendant dynamique le choix des modules utilisés en fonction de l’efficacité de chacun dans une situation donnée. / Recent years have been characterized by the overgrowth of video-surveillance systems and by automation of treatments they integrate. At the same time, object tracking has become, within years, a recurring problem in many domains and particularly in video-surveillance. In this dissertation, we propose a new object tracking method, based on the Ensemble Tracking method and integrating two main improvements. The first one lies on the separation of the heterogeneous feature space into a set of homogenous sub-spaces called modules and on the application, on each of them, of an Ensemble Tracking-based algorithm. The second one deals with the new tracking problem induced by this separation by building a specific particle filter. This filter weights each used module in order to estimate, for each frame in the sequence, both position and dimensions of the tracked object and the linear combination of modular decisions leading to the most discriminative observation. The results we present illustrate the global and individual efficiency of all the specific properties of our method and allow comparing this efficiency with the one of several reference tracking algorithms. Furthermore, all this work has led to an industrial development on the treatment systems of the partner company. In conclusion of this work, we present the prospects generated by these original developments, more particularly using the possibilities offered by the algorith mmodularity or making the modules choice dynamic according to their efficiency in a given situation.

Identiferoai:union.ndltd.org:theses.fr/2011CLF22167
Date14 October 2011
CreatorsPenne, Thomas
ContributorsClermont-Ferrand 2, Barra, Vincent, Tilmant, Christophe
Source SetsDépôt national des thèses électroniques françaises
LanguageFrench
Detected LanguageFrench
TypeElectronic Thesis or Dissertation, Text

Page generated in 0.0026 seconds