<p>Â Motivated by the increasing need to monitor safety-critical systems subject to uncer-<br>
tainties, a novel set-membership approach is proposed to estimate the state of a dynamical<br>
system with unknown-but-bounded exogenous inputs. By fully utilizing the system struc-<br>
tural information, the proposed algorithm can address both computational efficiency and<br>
estimation accuracy without requiring restrictive conditions on the system. Particularly,<br>
the system is first decomposed into the strongly observable subsystem and the weakly un-<br>
observable subsystem. To make full use of the subsystem’s properties, a set-membership<br>
observer based on the unknown input observer and an ellipsoidal set-membership observer<br>
are designed for the two subsystems, respectively. Then, the resulting set estimates from<br>
each subsystem are fused and transformed to obtain the set estimate for the original system,<br>
which is guaranteed to bound the actual system state. The conditions for the boundedness<br>
of the proposed set estimate are discussed, and the proposed set-membership observer is also<br>
tested numerically using illustrative examples.</p>
Identifer | oai:union.ndltd.org:purdue.edu/oai:figshare.com:article/21637310 |
Date | 29 November 2022 |
Creators | Marvin Jesse (14186726) |
Source Sets | Purdue University |
Detected Language | English |
Type | Text, Thesis |
Rights | CC BY 4.0 |
Relation | https://figshare.com/articles/thesis/A_NOVEL_APPROACH_TO_SET-MEMBERSHIP_OBSERVER_FOR_SYSTEMS_WITH_UNKNOWN_EXOGENOUS_INPUTS/21637310 |
Page generated in 0.002 seconds