Accelerometers deployed within smart structures produce a wealth of vibration data that can be analyzed to infer information about the types of acceleration events that are occurring within the structure. In the case of monitored smart buildings, some of these acceleration events are linked to occupant behavior, such as walking, operating machinery, closing doors, etc. The identification and classification of such events has many potential applications within a smart structure or city. Understanding occupant patterns could be beneficial for operations, retail, or HVAC management, as it could be used to monitor occupancy flow with a relatively sparse sensor network. It may also have detrimental implications in terms of cybersecurity, where such information could be mined for malicious practices if unauthorized access to the data was obtained. This work presents methods for the detection and classification of vibration events in an experimental smart building, Goodwin Hall at Virginia Tech.
Goodwin Hall's 200+ accelerometer network is used to gather acceleration data, from which vibration events are automatically detected and clustered. The presence of a vibration event is detected from a raw acceleration signal with an adaptive RMS threshold method. A feature vector is then created for each extracted event as areas under regions of the FFT of the event's acceleration signal. The feature vectors are then mapped into a low-dimensional space using principal component analysis, where they are clustered with various unsupervised algorithms. These processes have shown to be successful when gathering vibration events from a single-sensor setup, but pose challenges when expanded to a multi-sensor network. Because of this, expanded applications such as a semi-supervised classifier for events detected anywhere in the building are currently still under development. This semi-supervised process, combined with the known location of each sensor would allow inferences to be drawn about the frequency of different activity types in regions of the building not captured in the labeled data. Future work intends to address these multi-sensor challenges with adjustments to the algorithm process. / Master of Science / All objects experience vibrations when they are disturbed by some force. In the case of this work, the object is complex, a classroom building, but the principle still stands. When the building is disturbed by a force it will vibrate, even if the force is small, such as a person walking down a hallway or closing a door. The vibrations caused by these 'events' are unique to the type of event, that is, footstep vibrations will be different from door vibrations. These vibrations are observed with accelerometers, and the corresponding signal is used to determine what type of event caused the vibration. First, an event is automatically detected within the signal and separated from it. Second, characteristics unique to the signal are identified, a process known as 'feature extraction.' Finally, those features are used to distinguish the event from others and to identify what had caused it based on previous experimental data.
The ability to detect these events and classify them introduces many interesting applications, including any that would stem from occupant detection, including improved security or operations, retail, or HVAC management. The methods here may also be applicable to other applications, such as monitoring bridges and machinery, or for developing cutting-edge smartphone applications with the accelerometer that is built in.
Identifer | oai:union.ndltd.org:VTETD/oai:vtechworks.lib.vt.edu:10919/108844 |
Date | 23 February 2022 |
Creators | Hupfeldt, William George |
Contributors | Mechanical Engineering, Sarlo, Rodrigo, Sandu, Corina, Tarazaga, Pablo Alberto, Kurdila, Andrew J. |
Publisher | Virginia Tech |
Source Sets | Virginia Tech Theses and Dissertation |
Language | English |
Detected Language | English |
Type | Thesis |
Format | ETD, application/pdf, application/pdf |
Rights | Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International, http://creativecommons.org/licenses/by-nc-nd/4.0/ |
Page generated in 0.0024 seconds