Thesis: Ph. D., Joint Program in Oceanography/Applied Ocean Science and Engineering (Massachusetts Institute of Technology, Department of Earth, Atmospheric, and Planetary Sciences; and the Woods Hole Oceanographic Institution), 2016. / Cataloged from PDF version of thesis. Page 156/Figure B-1 contains text that runs off the edge of the page margin. / Includes bibliographical references. / Paleoclimate archives place the short instrumental record of climate variability in a longer temporal context and allow better understanding of the rate, nature and extent by which anthropogenic warming will impact natural and human systems. The ocean is a key component of the climate system and records of past ocean variability are thus essential for characterizing natural variability and quantifying climate sensitivity to radiative forcing. Coral skeletons are high-resolution archives of tropical sea surface temperatures (SSTs), but inconsistencies call the accuracy of existing coral proxy records into question. In this thesis, I first quantify the errors associated with the traditional coral thermometer, Sr/Ca, by comparing in situ logged SST with Sr/Ca-derived SST in four corals on the same reef. I show that intercolony disparities in mean Sr/Ca, amplitude of variability, and trend are not due to differences in water temperature, but rather to "vital effects" that result in a ±2° C uncertainty on reconstructed SST. I then expand, refine, and test a new paleothermometer, Sr-U, across multiple coral species and through time. I show that Sr-U captures spatial SST variability with an uncertainty of ±0.6° C. When applied to two corals outside of the calibration, Sr-U accurately captures the mean SST and the 20th century trend in the Western Tropical Atlantic. Finally, I apply Sr-U to a coral from the Little Ice Age (LIA) to address uncertainties in the magnitude of western tropical Atlantic cooling during a 95-year period spanning 1465-1560. Results suggest the region was 1.1° C±0.6°C cooler than the 1958-1988 mean, but within error of early 20th century SST at this site. Critically, several periods of warmth, equivalent to the 1958-1988 mean, occurred during a solar minimum that is widely believed to have been a cool period of the LIA. My results indicate that Sr/Ca exaggerates the actual cooling by almost 3° C. My record demonstrates the value of Sr-U and highlights the need for continuous accurate SST records to better constrain the amplitude, drivers, and mechanisms of LIA tropical climate change. / by Alice Elizabeth Alpert. / Ph. D.
Identifer | oai:union.ndltd.org:MIT/oai:dspace.mit.edu:1721.1/107317 |
Date | January 2016 |
Creators | Alpert, Alice Elizabeth |
Contributors | Anne L. Cohen, Glenn A. Gaetani and Delia W. Oppo., Woods Hole Oceanographic Institution., Joint Program in Oceanography/Applied Ocean Science and Engineering., Massachusetts Institute of Technology. Department of Earth, Atmospheric, and Planetary Sciences., Woods Hole Oceanographic Institution. |
Publisher | Massachusetts Institute of Technology |
Source Sets | M.I.T. Theses and Dissertation |
Language | English |
Detected Language | English |
Type | Thesis |
Format | 245 pages, application/pdf |
Rights | MIT theses are protected by copyright. They may be viewed, downloaded, or printed from this source but further reproduction or distribution in any format is prohibited without written permission., http://dspace.mit.edu/handle/1721.1/7582 |
Page generated in 0.1661 seconds