Includes bibliographical references. / Underwater Sound Velocity Profiles (SVP) are used throughout the world by their respective navies for submarine and surface vessel strategic operations and exercises. Together with the sonar equations, the sound velocity profiles are of paramount importance to solve underwater sound detectability problems as they provide insight into the highly variable sound transmission loss. Oceanographic records of sea temperature-depth profiles are ordinarily incorporated into a sonar propagation model to determine the sound level at any point (range and depth). The ability to predict these environmental conditions with a defined level of confidence and accuracy significantly increases the situational awareness to in-theatre naval operators and fleet planners. The hypothesis in this thesis is that thermal characteristics of the water column in the southern Benguela can be numerically modeled and deduced from a single Sea Surface Temperature (SST) value, if provided with sufficient historic temperature-depth profiles for that region. For operational use, the SST would ideally be provided from near real time remotely sensed satellite derived data.
Identifer | oai:union.ndltd.org:netd.ac.za/oai:union.ndltd.org:uct/oai:localhost:11427/10915 |
Date | January 2012 |
Creators | Wainman, Carl Kevin |
Publisher | University of Cape Town, Faculty of Science, Department of Oceanography |
Source Sets | South African National ETD Portal |
Language | English |
Detected Language | English |
Type | Doctoral Thesis, Doctoral, PhD |
Format | application/pdf |
Page generated in 0.002 seconds