For a graph G = (V, E), a non-empty set S ⊆ V is a defensive alliance if for every vertex v in S, v has at most one more neighbor in V - S than it has in S, and S is an offensive alliance if for every v ∈ V - S that has a neighbor in S, v has more neighbors in S than in V - S. A powerful alliance is both defensive and offensive. We initiate the study of powerful alliances in graphs.
Identifer | oai:union.ndltd.org:ETSU/oai:dc.etsu.edu:etsu-works-18302 |
Date | 28 April 2009 |
Creators | Brigham, Robert C., Dutton, Ronald D., Haynes, Teresa W., Hedetniemi, Stephen T. |
Publisher | Digital Commons @ East Tennessee State University |
Source Sets | East Tennessee State University |
Detected Language | English |
Type | text |
Source | ETSU Faculty Works |
Page generated in 0.0022 seconds