Return to search

Optimal Mobile Computation Offloading With Hard Task Deadlines

This thesis considers mobile computation offloading where task completion times are subject to hard deadline constraints. Hard deadlines are difficult to meet in conventional computation offloading due to the stochastic nature of the wireless channels involved. Rather than using binary offload decisions, we permit concurrent remote and local job execution when it is needed to ensure task completion deadlines. The thesis addresses this problem for homogeneous Markovian wireless channels. Two online energy-optimal computation offloading algorithms, OnOpt and MultiOpt, are proposed. OnOpt uploads the job to the server continuously and MultiOpt uploads the job in separate parts, each of which requires a separate offload initiation decision. The energy optimality of the algorithms is shown by constructing a time-dilated absorbing Markov process and applying dynamic programming. Closed form results are derived for general Markovian channels. The Gilbert-Elliott channel model is used to show how a particular Markov chain structure can be exploited to compute optimal offload initiation times more efficiently. The performance of the proposed algorithms is compared to three others, namely, Immediate Offloading, Channel Threshold, and Local Execution. Performance results show that the proposed algorithms can significantly improve mobile device energy consumption compared to the other approaches while guaranteeing hard task execution deadlines. / Thesis / Master of Applied Science (MASc)

Identiferoai:union.ndltd.org:mcmaster.ca/oai:macsphere.mcmaster.ca:11375/24582
Date January 2019
CreatorsHekmati, Arvin
ContributorsTodd, Terence D., Karakostas, George, Electrical and Computer Engineering
Source SetsMcMaster University
LanguageEnglish
Detected LanguageEnglish
TypeThesis

Page generated in 0.0018 seconds