Return to search

Distinct element modelling of pipe-soil interaction for offshore pipelines on granular soils

Offshore on-bottom pipelines are subjected to cycles of thermal and pressure-induced axial expansion, which can cause them to buckle laterally. For an elegant and cost-effective solution, lateral buckling is allowed in a controlled manner. Of the various design parameters, the soil resistance has the greatest associated uncertainty. Previous studies of lateral pipe-soil interaction have used laboratory model tests and continuum-based numerical methods. However, they are economically and computationally expensive, and have mostly been restricted to pipes on undrained clay. To overcome this limitation, this thesis introduces the distinct element method (DEM) as a novel numerical tool for the study of lateral pipe-soil interaction for partially embedded offshore pipelines on sandy seabeds. The DEM directly models the particulate nature of sandy soils, allowing large displacements of discrete bodies and providing insights into the mechanics of the soil at a particle level. Pipe{soil interaction is studied by DEM analyses through four separate research stages: (i) mechanical characterisation of the soil, (ii) specimen preparation and pipeline implementation, (iii) small displacement pipe loading tests and (iv) large displacement pipe loading tests. The soil is modelled as an assembly of spherical particles exchanging contact forces, energy and momentum when they interact. At the microscopic scale, a novel moment-relative rotation contact law is introduced to account for the irregular shape of real sand grains. At a macroscopic scale, the mechanical behaviour of the sand is calibrated using experimental triaxial test data. Additional work includes the numerical preparation of a soil assembly and the implementation of a pipeline object in the open-source DEM code Yade. A novel specimen preparation technique is developed to assemble a homogeneous sample at a desired relative density. The pipeline is implemented as a cylindrical body with a continuously curved surface and a specific mass. Small displacement loading tests are performed, with a segment of the pipeline interacting with a 3D prismatic soil domain, replicating plane strain conditions. The influence of particle size, domain thickness, loading velocity and damping are investigated. The findings provide valuable recommendations for performing DEM simulations of this problem, balancing numerical accuracy and computational effort. Large displacement loading tests are performed to validate the DEM approach and to obtain detailed insights into the nature of the pipe-soil interaction. Monotonic vertical and lateral loading simulations are quantitatively compared with laboratory results. To replicate realistic loading conditions of the pipeline on the seabed, cyclic large displacement tests are also performed. Both the monotonic and the cyclic tests show a good level of agreement with experimental results obtained in previous research. Moreover, the numerical analyses provide insights into the evolution of particle motion and the failure mechanism within the soil.

Identiferoai:union.ndltd.org:bl.uk/oai:ethos.bl.uk:692887
Date January 2015
CreatorsMacaro, Giulia
ContributorsMartin, Chris M. ; Utili, Stefano
PublisherUniversity of Oxford
Source SetsEthos UK
Detected LanguageEnglish
TypeElectronic Thesis or Dissertation
Sourcehttp://ora.ox.ac.uk/objects/uuid:cf38c129-502f-4d7d-aa8c-fea5d95ad2d2

Page generated in 0.002 seconds