Driven by the rising costs, decreasing convenience, and increased demand of fossil fuels, the need for alternative, sustainable energy sources has caused a spark in interest in biomass-based fuels. Oleaginous organisms such as yeast, algae, and bacteria have been considered as microscopic biofactories for oils that can be converted into biodiesel. The process of growing such organisms using current technology requires an alarming amount of freshwater, which is another resource of growing concern. The research detailed within explains how several sources of underutilized wastewater can serve as growth medium in the biodiesel production process. Using only nitrogen and in one case phosphorus as external supplements, algae were shown to grow on produced water from oil and gas industry waste, local municipal wastewater, environmental brackish water from the Great Salt Lake, and wastewater from the potato processing industry. In each case, growth and biodiesel production in wastewaters was as good as or better than laboratory media. The bacterial organism Rhodococcus opacus PD630 and the yeast organism Cryptococcus curvatus were also used to grow on the dairy manufacturing wastewater whey permeate, a large source of underutilized fixed carbon, with successful lipid production. C. curvatus was also used to successfully grow and form large amounts of biodiesel from ice cream factory wastewater and from wheat straw hydrolysate. In each case, the need for freshwater and outside nutrients was nearly entirely replaced, with the exception of some nitrogen supplementation, with a wastewater nutrient source, thus adding to the sustainability of biomass-based fuels.
Identifer | oai:union.ndltd.org:UTAHS/oai:digitalcommons.usu.edu:etd-2330 |
Date | 01 May 2012 |
Creators | Godfrey, Valerie |
Publisher | DigitalCommons@USU |
Source Sets | Utah State University |
Detected Language | English |
Type | text |
Format | application/pdf |
Source | All Graduate Theses and Dissertations |
Rights | Copyright for this work is held by the author. Transmission or reproduction of materials protected by copyright beyond that allowed by fair use requires the written permission of the copyright owners. Works not in the public domain cannot be commercially exploited without permission of the copyright owner. Responsibility for any use rests exclusively with the user. For more information contact Andrew Wesolek (andrew.wesolek@usu.edu). |
Page generated in 0.0019 seconds