Return to search

Development and Validation of a Novel Biomechanical Testing Setup and Procedure for Olecranon Fracture Fixation Assessment

abstract: Olecranon fractures account for approximately 10% of upper extremity fractures and 95% of them require surgical fixation. Most of the clinical, retrospective and biomechanical studies have supported plate fixation over other surgical fixation techniques since plates have demonstrated low incidence of reoperation, high fixation stability and resumption of activities of daily living (ADL) earlier. Thus far, biomechanical studies have been helpful in evaluating and comparing different plate fixation constructs based on fracture stability. However, they have not provided information that can be used to design rehabilitation protocols such as information that relates load at the hand with tendon tension or load at the interface between the plate and the bone. The set-ups used in biomechanical studies have included simple mechanical testing machines that either measured construct stiffness by cyclic loading the specimens or construct strength by performing ramp load until failure. Some biomechanical studies attempted to simulate tendon tension but the in-vivo tension applied to the tendon remains unknown. In this study, a novel procedure to test the olecranon fracture fixation using modern olecranon plates was developed to improve the biomechanical understanding of failures and to help determine the weights that can be safely lifted and the range of motion (ROM) that should be performed during rehabilitation procedures.

Design objectives were defined based on surgeon's feedback and analysis of unmet needs in the area of biomechanical testing. Four pilot cadaveric specimens were prepared to run on an upper extremity feedback controller and the set-up was validated based on the design objectives. Cadaveric specimen preparation included a series of steps such as dissection, suturing and potting that were standardized and improved iteratively after pilot testing. Additionally, a fracture and plating protocol was developed and fixture lengths were standardized based on anthropometric data. Results from the early pilot studies indicated shortcomings in the design, which was then iteratively refined for the subsequent studies. The final pilot study demonstrated that all of the design objectives were met. This system is planned for use in future studies that will assess olecranon fracture fixation and that will investigate the safety of rehabilitation protocols. / Dissertation/Thesis / Masters Thesis Bioengineering 2015

Identiferoai:union.ndltd.org:asu.edu/item:36402
Date January 2015
ContributorsJain, Saaransh (Author), Abbas, James (Advisor), Labelle, Jeffrey (Advisor), Jacofsky, Marc (Committee member), Arizona State University (Publisher)
Source SetsArizona State University
LanguageEnglish
Detected LanguageEnglish
TypeMasters Thesis
Format85 pages
Rightshttp://rightsstatements.org/vocab/InC/1.0/, All Rights Reserved

Page generated in 0.0133 seconds