A classificação isomorfa dos espaços de Banach separáveis C(K) é devida a Milutin no caso em que K são não enumeráveis e a Bessaga e Pelczynski no caso em que K são enumeráveis. Neste trabalho apresentamos uma extensão vetorial dessa classificação e tiramos várias consequências, por exemplo, considerando o espaço métrico compacto infinito K e Y um espaço de Banach: 1. Sendo 1 < p < ∞ e Γ um conjunto infinito, classificamos, a menos de isomorfismo, os espaços de Banach C(K, Y ⊕ lp(Γ)), quando o dual de Y contém uma cópia de lq, onde 1/p+ 1/q =1. 2. Classificamos os espaços de Banach C(K, Y ⊕ l∞(Γ)), quando a densidade de Y é estritamente menor que 2|Γ|. 3. Classificamos os espaços de Banach C(K ×(S⊕ βΓ)) e C(S ⊕ (K× βΓ)), onde S é um compacto disperso de Hausdorff arbitrário e βΓ é a compactificação de Stone-Cech de Γ. Obtemos, também, algumas leis de cancelamento para espaços de Banach da forma C(K1,X)⊕ C(K2,Y), onde K1 e K2 são espaços compactos métricos infinitos de Hausdorff e X, Y espaços de Banach satisfazendo condições adequadas. Estabelecemos também um teorema de quase-dicotomia envolvendo os espaços C(K,X), onde X tem cotipo finito. Finalmente, apresentamos algumas majorações nas distorções de isomorfismos positivos de C([0,ωk]) em C([0,ω]) e também de C([0,ω]) em C([0,ωk]), k∈ N, k ≥ 2. / The isomorphic classification of separable Banach spaces C(K) is due Milutin in the case when K are uncountable and to Bessaga and Pelczynski in the case when K are countable. In this work we prove a vectorial extention of this classification and provide several consequences, for example considering the infinite metric compact space K and Y a Banach space: 1. Let 1 < p < ∞ and Γ a infinite set, we classify, up to an isomorphism, the Banach spaces C(K, Y ⊕ lp(Γ)), in the case where the dual of Y contains no copy of lq, where 1/p+ 1/q =1. 2. We classify the Banach spaces C(K, Y ⊕ l∞(Γ)), when the density character of Y is strictly less that 2|Γ|. 3. We classify the Banach spaces C(K ×(S⊕ βΓ)) and C(S ⊕ (K× βΓ)) where S is an arbitrary dispersed compact and βΓ is the Stone-Cech compactification of Γ. We obtain also some cancellation laws for Banach spaces in the form C(K1,X)⊕ C(K2,Y), where K1 and K2 are metric compact Hausdorff spaces and X, Y Banach spaces satisfying appropriate conditions. We established also a quasi-dichotomy theorem envolving the C(K,X) spaces, where X is of finite cotype. Finally, we present some upper bounds of distortions of positive isomorphisms of C([0,ωk]) on C([0,ω]) and also of C([0,ω]) on C([0,ωk]), k∈ N, k ≥ 2.
Identifer | oai:union.ndltd.org:usp.br/oai:teses.usp.br:tde-27082015-102002 |
Date | 12 June 2015 |
Creators | Zahn, Mauricio |
Contributors | Galego, Eloi Medina |
Publisher | Biblioteca Digitais de Teses e Dissertações da USP |
Source Sets | Universidade de São Paulo |
Language | Portuguese |
Detected Language | English |
Type | Tese de Doutorado |
Format | application/pdf |
Rights | Liberar o conteúdo para acesso público. |
Page generated in 0.0018 seconds