O problema de navegação de robôs móveis tem sido estudado ao longo de vários anos, com o objetivo de se construir um robô com elevado grau de autonomia. O aumento da autonomia de um robô móvel está relacionado com a capacidade de aquisição de informações e com a automatização de tarefas, tal como a construção de mapas de ambiente. Sistemas de visão são amplamente utilizados em tarefas de robôs autônomos devido a grande quantidade de informação contida em uma imagem. Além disso, sensores omnidirecionais catadióptricos permitem ainda a obtenção de informação visual em uma imagem de 360º, dispensando o movimento da câmera em direções de interesse para a tarefa do robô. Mapas de ambiente podem ser construídos para a implementação de estratégias de navegações mais autônomas. Nesse trabalho desenvolveu-se uma metodologia para a construção de mapas para navegação, os quais são a representação da geometria do ambiente. Contém a informação adquirida por um sensor catadióptrico omnidirecional estéreo, construído por uma câmera e um espelho hiperbólico. Para a construção de mapas, os processos de alinhamento, correspondência e integração, são efetuados utilizando-se métricas de diferença angular e de distância entre os pontos. A partir da fusão dos mapas locais cria-se um mapa global do ambiente. O processo aqui desenvolvido para a construção do mapa global permite a adequação de algoritmos de planejamento de trajetória, estimativa de espaço livre e auto-localização, de maneira a obter uma navegação autônoma. / The problem of mobile robot navigation has been studied for many years, aiming at build a robot with an high degree of autonomy. The increase in autonomy of a mobile robot is related to its capacity of acquisition of information and the automation of tasks, such as the environment map building. In this aspect vision has been widely used due to the great amount of information in an image. Besides that catadioptric omnidirectional sensors allow to get visual information in a 360o image, discharging the need of camera movement in directions of interest for the robot task. Environment maps may be built for an implementation of strategies of more autonomous navigations. In this work a methodology is developed for building maps for robot navigations, which are the representation of the environment geometry. The map contains the information received by a stereo omnidirectional catadioptric sensor built by a camera and a hyperbolic mirror. For the map building, the processes of alignment, registration and integration are performed using metric of angular difference and distance between the points. From the fusion of local maps a global map of the environment is created. The method developed in this work for global map building allows to be coupled with algorithms of path planning, self-location and free space estimation, so that autonomous robot navigation can be obtained.
Identifer | oai:union.ndltd.org:IBICT/oai:teses.usp.br:tde-13072004-151103 |
Date | 23 April 2004 |
Creators | Cláudia Cristina Ghirardello Deccó |
Contributors | Jun Okamoto Junior, Mario Fernando Montenegro Campos, Andre Riyuiti Hirakawa, Lucas Antonio Moscato, Hans Jorg Andreas Schneebeli |
Publisher | Universidade de São Paulo, Engenharia Mecânica, USP, BR |
Source Sets | IBICT Brazilian ETDs |
Language | Portuguese |
Detected Language | Portuguese |
Type | info:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/doctoralThesis |
Source | reponame:Biblioteca Digital de Teses e Dissertações da USP, instname:Universidade de São Paulo, instacron:USP |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0025 seconds