Return to search

Assessment of the Expression of Brucella Abortus Heat Shock Protein, Groel, in Vaccinia Virus to Induce Protection Against a Brucella Challenge in Balb/C Mice

B. abortus is an intracellular facultative bacterial pathogen which causes abortion in cattle and undulant fever in humans. Cattle vaccines such as B. abortus strains 19 and RB51 are live vaccine strains which protect approximately 75% of the vaccinated animals. No effective vaccines are available for the prevention of brucellosis in humans. We are developing vaccinia virus recombinants expressing various B. abortus proteins to prevent brucellosis in susceptible mammalian species. In this work the B. abortus groEL gene encoding the antigenic heat shock protein GroEL was subcloned into vaccinia virus via homologous recombination. Expression of the GroEL protein in vaccinia infected cells in-vivo was confirmed by immunoblotting. Groups of 5 female BALB/C mice were injected with the vaccinia recombinant or appropriate positive and negative control vaccines. Mice were bled and their humoral immune responses assessed. In addition, mice were challenged with virulent B. abortus strain 2308 and protection measured by the rate of splenic clearance of live Brucella. In spite of demonstrating specific GroEL antibodies in recombinant vaccinia injected mice, no significant level of protection was demonstrable. Preliminary lymphocyte transformation assays were carried out to establish if a cell mediated immune response to GroEL was induced in the vaccinated animals. / Master of Science

Identiferoai:union.ndltd.org:VTETD/oai:vtechworks.lib.vt.edu:10919/36943
Date29 August 1997
CreatorsBaloglu, Simge
ContributorsVeterinary Medical Sciences, Boyle, Stephen M., Sriranganathan, Nammalwar, Schurig, Gerhardt G., Toth, Thomas E.
PublisherVirginia Tech
Source SetsVirginia Tech Theses and Dissertation
Detected LanguageEnglish
TypeThesis
Formatapplication/pdf
RightsIn Copyright, http://rightsstatements.org/vocab/InC/1.0/
Relationetd.pdf

Page generated in 0.002 seconds