Current one-handed manual wheelchairs are difficult to propel because one arm can only provide half the power that is ascertained in a two-handed manual wheelchair. A power-assisted hemiplegic (one-sided paralysis) wheelchair was developed that can effectively be propelled with one arm while remaining maneuverable, lightweight, and foldable. An existing manual wheelchair was minimally modified and fitted with powerassisted components that could alternatively be attached to a wide range of manual wheelchairs. The design implements a motor and gear train to power the wheel on the users affected side, encoders on both rear wheels to track wheel position, and a heel interface on the footrest to control steering. A controls program was developed that analyzes wheel position and steering to respond to the motion of the hand-driven wheel. Extensive testing was performed to ensure design integrity. Testing results showed that the prototype successfully met and exceeded predetermined design specifications based on industry standard testing procedures. The design has the potential to deliver increased freedom to a considerable consumer base.
Identifer | oai:union.ndltd.org:wpi.edu/oai:digitalcommons.wpi.edu:etd-theses-1793 |
Date | 09 May 2006 |
Creators | Liadis, Keith Nicholas |
Contributors | Allen H. Hoffman, Advisor, Holly K. Ault, Committee Member, Michael A. Demetriou, Committee Member, Yiming (Kevin) Rong, Committee Member |
Publisher | Digital WPI |
Source Sets | Worcester Polytechnic Institute |
Detected Language | English |
Type | text |
Format | application/pdf |
Source | Masters Theses (All Theses, All Years) |
Page generated in 0.002 seconds