Liquid sloshing with unrestrained free surface in a moving container is associated with various engineering problems, such as tankers on highways, liquid oscillations in large storage tanks caused by earthquakes, sloshing of liquid cargo in ocean-going vessels, and the motion of liquid fuel in aircraft and spacecraft. The purpose of this study is to develop a three-dimensional (3D) numerical wave tank with or without internal structures to investigate the mechanism of liquid sloshing and the interaction between the fluid and internal structures. The developed 3D time-independent finite difference method is applied on solving liquid sloshing in tanks with or without the influence of baffles under the ground motion of six-degrees of freedom. The 3D Navier-Stokes equations were solved and transformed to a tank-fixed coordinate system, and the fully nonlinear kinematic and dynamic free surface boundary conditions for fluid sloshing in a rectangular tank with a square base were considered. The fluid is assumed incompressible in this study. The complicated interaction in the vicinity of the fluid-structure interface was solved by implementing one dimensional ghost cell approach and the stretching grid technique near the fluid-structure boundaries were used to catch the detailed evolution of local flow field. A PC-cluster was established by linking several single computers to reduce the computational times due to the implementation of the 3D numerical model. The Message Passing Interface (MPI) parallel language and MPICH2 software were utilized to code the computer codes and to carry out the circumstance of parallel computation, respectively.
The developed numerical scheme was verified by rigorous benchmark tests. Not only the reported analytical, numerical and experimental studies were compared with the present numerical results, the experimental investigation was also involved in the present work to further validate the accuracy of the numerical scheme. All the benchmark tests of this study showed excellent accuracy of the developed numerical scheme. For a tank without internal structures, the coupled motions of surge and sway are simulated with various excitation angles, excitation frequencies and water depths. The characteristics of sloshing waves are dissected in terms of the classification of sloshing wave types, sloshing amplitude, beating phenomenon, sloshing-induced forces and energy transfer of sloshing waves. Six types of sloshing waves, named single-directional, diagonal, square-like, swirling-like, swirling and irregular waves, were found and classified in the present study and the occurrence of these waves are tightly in connection with the excitation frequency of the tank. The effect of excitation angle on the characteristics of sloshing waves is explored and discussed, especially for swirling waves. The spectral analyses of sloshing displacement of various sloshing waves are examined and a clear evidence of the correlation between sloshing wave patterns and resonant modes of sloshing waves are demonstrated. The mechanism of switching direction of swirling waves is discussed by investigating the situation of circulatory flow, the instantaneous free surface, the gravitational effect and the instantaneous direction of external forcing. The coupling effects of heave, surge and sway motions were also included in this study and the result showed an unstable influence of heave motion on the kinematic and dynamic characteristics of sloshing waves when the vertical excitation frequency of the tank is twice as large as the fundamental natural frequency. Except irregular waves, the other types of sloshing waves are converted into swirling waves due to the effect of heave motion.
The study related to tuned liquid damper (TLD) in 2D and 3D tanks were considered. A comprehensive investigation for a 2D tank with vertically tank bottom-mounted baffles (baffled tank) are demonstrated and discussed with respect to the influence of baffle height on the natural mode of the tank, the evolution of vortices and vortex shedding phenomenon, the relationship between the vortex shedding frequency and the excitation frequency of the tank, the vortex size generated in the vicinity of the baffle tip, the interaction of vortices inside the tank. The baffle height shows a significant influence on the shift of the first natural frequency of the baffled tank and the liquid depth also plays an important part in determining this influence. In other words, the shift of the first natural mode due to various baffle height is varied with water depths. The design of two baffles separated by 0.2 times the tank breadth is an efficient tool to not only reduce the sloshing amplitude but switch the first natural frequency of the tank. The sloshing displacement is affected distinctly by different numbers of baffles mounted vertically on the tank bottom. The more baffles mounted onto the tank bottom, the smaller the sloshing displacement is presented in both the transient and steady-state periods. The processes of the evolution of vortices near the baffle tip are categorized into four phases: the formation of separated shear layer and generation of vortices, the formation of a vertical jet and shedding of vortices, the interaction between shedding vortices and sloshing flow (the generation of snaky flow) and the interaction between snaky flow and sloshing waves. Vortex shedding phenomenon due to stronger vertical jets occurs when the excitation frequency is close to the first natural mode of the baffled tank. The size of the vortex generated near the baffle tip is discussed and the vortex size is closely correlated with the baffle height.
Two types of 3D tuned liquid dampers, a vertically tank bottom-mounted baffle and a vertical plate, are discussed for a tank under coupled surge-sway motions. The wave types of diagonal and single-directional waves switch to the swirling type due to the influence of the baffle. The phenomenon of square-like waves or irregular waves coexisting with swirling waves is found in the baffled tank under diagonal excitation. The baffle and the vertical plate mounted parallel to the east (west) wall of the tank can effectively reduce the sloshing amplitude when the excitation angle is between 0 degree and 10 degree and the corresponding sloshing displacement in the sway (z) direction becomes more dominant with the increase of the excitation angle. The shift of the first natural mode of the baffled tank due to various baffle heights in the x direction is dominated in this design of baffled tank. The length of the plate can cause a significant influence on not only the variation of the natural frequencies but the type of the sloshing waves. The influence of the vertical plate on the irregular waves is insignificant and several peaks appear in the spectral analysis of the sloshing displacement for the irregular waves and the numbers of peaks are more than that of the baffled tank.
Identifer | oai:union.ndltd.org:NSYSU/oai:NSYSU:etd-0709110-120119 |
Date | 09 July 2010 |
Creators | Wu, Chih-Hua |
Contributors | Bang-Fuh Chen, Liang-Hsiung Huang, Ching-Piao Tsai, MIing-Hui Yu, Ching-Jer Huang |
Publisher | NSYSU |
Source Sets | NSYSU Electronic Thesis and Dissertation Archive |
Language | English |
Detected Language | English |
Type | text |
Format | application/pdf |
Source | http://etd.lib.nsysu.edu.tw/ETD-db/ETD-search/view_etd?URN=etd-0709110-120119 |
Rights | unrestricted, Copyright information available at source archive |
Page generated in 0.0027 seconds