Return to search

Short Arc Initial Orbit Determination For Leo Objects And The Impact Of Observation Eelevation On Predictive Accuracy

The expansion of space activities has led to an increase in congestion. With this increase, there has been a growing emphasis on the importance of space situational awareness. Without it, the space environment can become hazardous, with increasing threats of collision and debris generation. As the utilization of space continues to grow, effective methods for tracking objects to maintain situational awareness must also be considered. One approach to tracking objects in space involves a series of steps, including optical observations and orbit estimations using initial orbit determination methods, followed by additional observations and continuous tracking. However, a challenge with this tracking method is the low quality and quantity of observational data, which can impact the accuracy achieved from these methods. This thesis will study two new and two traditional methods of initial orbit determination, analyzing improvements in accuracy with limited data for each method. Additionally, the impact of observation elevation will be analyzed to assess its effects on the quality of data, and how this, along with a limited amount of data, can affect the overall initial orbit determination accuracy.

Identiferoai:union.ndltd.org:CALPOLY/oai:digitalcommons.calpoly.edu:theses-4506
Date01 June 2024
CreatorsDiGregorio, Alexis
PublisherDigitalCommons@CalPoly
Source SetsCalifornia Polytechnic State University
Detected LanguageEnglish
Typetext
Formatapplication/pdf
SourceMaster's Theses

Page generated in 0.0018 seconds