This report explores simultaneous crystallization in multicomponent solutions to intensification of metal recovery in lithium-ion batteries. The main focus is to evaluate and compare the efficiency of sodium hydroxide and sodium carbonate as precipitating agents in recovering cobalt, nickel, manganese and lithium. To be able to do this, 15 different metal systems were precipitated with these two precipitating agents at 8 and 12 molar equivalent. The samples were then analyzed through ICP-OES, XRD, gravimetric analysis, and SEM-EDX. The results showed that the precipitation efficiency of the transition metals cobalt, nickel and manganese, in all the system was 98% or more. Lithium precipitated only with carbonate. In the system with four metals and 12 molar equivalents carbonate lithium 78% was precipitated. The results indicate that higher concentration of carbonate leads to higher precipitation efficiency. A way to likely reach a higher effective concentration is to first neutralize the solution with sodium hydroxide and then precipitate it with carbonate.
Identifer | oai:union.ndltd.org:UPSALLA1/oai:DiVA.org:kth-330345 |
Date | January 2023 |
Creators | Nur, Aran, Bergvall, Axel, Forsberg, Gustaf, Kaur, Nemrit |
Publisher | KTH, Kemiteknik |
Source Sets | DiVA Archive at Upsalla University |
Language | Swedish |
Detected Language | English |
Type | Student thesis, info:eu-repo/semantics/bachelorThesis, text |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Relation | TRITA-CBH-GRU ; 2023:226 |
Page generated in 0.002 seconds