Return to search

Nanotubes for Battery Applications

<p>Nanomaterials have attracted great interest in recent years, and are now also being considered for battery applications. Reducing the particle size of some electrode materials can increase battery performance considerably, especially with regard to capacity, power and rate capability. This thesis presents a study focused on the performance of such a material, vanadium oxide nanotubes, as cathode material for rechargeable lithium batteries.</p><p>These nanotubes were synthesized by a sol-gel process followed by hydrothermal treatment. They consist of vanadium oxide layers separated by structure-directing agents, normally amines or metal ions, e.g., Na<sup>+</sup>, Ca<sup>2+</sup>, Mn<sup>2+</sup> and Cu<sup>2+</sup>. The layers are arranged in a scroll-like manner, allowing the interlayer structure to expand and contract, depending on the size of the embedded guest. This tubular form of vanadium oxide was able to insert lithium ions reversibly, making it a candidate cathode material. The structural and electrochemical response to lithium ion insertion was carefully studied to define optimal performance criteria and probe the lithium insertion mechanism. This was done using several characterization techniques, including X-ray diffraction, a variety of spectroscopic methods and electrochemical testing. Galvanostatic measurements show that the material can be charged and discharged reversibly for >100 cycles with a capacity of 150-200 mAh/g. The electrochemical performance is, however, dependent on the electrode film preparation technique, the choice of salt in the electrolyte and the nature of the embedded guest. Results from photoelectron spectroscopy, and soft X-ray emission and absorption spectroscopy confirm that vanadium is reduced during lithium insertion and that three oxidation states (V<sup>5+</sup>, V<sup>4+ </sup>and V<sup>3+</sup>) co-exist at potentials below 2.0 V. <i>In situ</i> X-ray diffraction, performed during potential stepping, identifies two separate processes during lithium insertion: a fast decrease of the interlayer distance followed by a slow two-dimensional relaxation of the vanadium oxide layers. </p>

Identiferoai:union.ndltd.org:UPSALLA/oai:DiVA.org:uu-5870
Date January 2005
CreatorsNordlinder, Sara
PublisherUppsala University, Department of Materials Chemistry, Uppsala : Acta Universitatis Upsaliensis
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageEnglish
TypeDoctoral thesis, comprehensive summary, text
RelationDigital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology, 1651-6214 ; 72

Page generated in 0.0025 seconds