The Global System for Mobile (GSM) cellular standard, having been in existence for over two decades, is the most widely deployed wireless technology in the world. While third generation networks and beyond, such as Universal Mobile Telecommunications System (UMTS) and Long Term Evolution (LTE), are undergoing extraordinary growth and driving a large share of current cellular development, technologies and deployments based on GSM are still dominant on a global scale and, like more recent standards, continue to evolve very rapidly.
The software-defined radio (SDR) base station is one technology that is driving rapid change in cellular infrastructure. While commercial vendors have now embraced SDR, there is another movement that has recently gained prominence. That movement is the convergence of open source software and hardware with cellular implementation. OpenBTS, a deployable implementation of the GSM radio air interface, and the Universal Software Radio Peripheral (USRP), a RF hardware platform, are two primary examples of such open source software and hardware products. OpenBTS and the USRP underlie three GSM features that are implemented and presented in this thesis.
This thesis describes the extension of the OpenBTS software-defined radio transceiver in the three critical areas of user capacity, transmit signal integrity, and the embedded small form factor. First, an optimized wideband multicarrier implementation is presented that substantially increases the capacity beyond that of a single carrier system. Second, the GSM modulator is examined in depth and extended to provide performance that exceeds standards compliance by a significant margin. Third, operation of the GSM transceiver on an E100 embedded platform with ARM and fixed point DSP processors will be explored, optimized, and tested. / Master of Science
Identifer | oai:union.ndltd.org:VTETD/oai:vtechworks.lib.vt.edu:10919/35181 |
Date | 26 October 2012 |
Creators | Tsou, Thomas |
Contributors | Electrical and Computer Engineering, McGwier, Robert W., Reed, Jeffrey H., Clancy, Thomas Charles III |
Publisher | Virginia Tech |
Source Sets | Virginia Tech Theses and Dissertation |
Detected Language | English |
Type | Thesis |
Format | application/pdf |
Rights | In Copyright, http://rightsstatements.org/vocab/InC/1.0/ |
Relation | Tsou_T_T_2012.pdf |
Page generated in 0.0022 seconds