Return to search

Line search methods with variable sample size / Metodi linijskog pretrazivanja sa promenljivom velicinom uzorka

<p>The problem under consideration is an unconstrained optimization&nbsp;problem with the objective function in the form of mathematical ex-pectation. The expectation is with respect to the random variable that represents the uncertainty. Therefore, the objective &nbsp;function is in fact deterministic. However, nding the analytical form of that objective function can be very dicult or even impossible. This is the reason why the sample average approximation is often used. In order to obtain reasonable good approximation of the objective function, we have to use relatively large sample size. We assume that the sample is generated at the beginning of the optimization process and therefore we can consider this sample average objective function as the deterministic one. However, applying some deterministic method on that sample average function from the start can be very costly. The number of evaluations of the function under expectation is a common way of measuring the cost of an algorithm. Therefore, methods that vary the sample size throughout the optimization process are developed. Most of them are trying to determine the optimal dynamics of increasing the sample size.</p><p>The main goal of this thesis is to develop the clas of methods that&nbsp;can decrease the cost of an algorithm by decreasing the number of&nbsp;function evaluations. The idea is to decrease the sample size whenever&nbsp;it seems to be reasonable - roughly speaking, we do not want to impose&nbsp;a large precision, i.e. a large sample size when we are far away from the&nbsp;solution we search for. The detailed description of the new methods&nbsp;<br />is presented in Chapter 4 together with the convergence analysis. It&nbsp;is shown that the approximate solution is of the same quality as the&nbsp;one obtained by dealing with the full sample from the start.</p><p>Another important characteristic of the methods that are proposed&nbsp;here is the line search technique which is used for obtaining the sub-sequent iterates. The idea is to nd a suitable direction and to search&nbsp;along it until we obtain a sucient decrease in the &nbsp;function value. The&nbsp;sucient decrease is determined throughout the line search rule. In&nbsp;Chapter 4, that rule is supposed to be monotone, i.e. we are imposing&nbsp;strict decrease of the function value. In order to decrease the cost of&nbsp;the algorithm even more and to enlarge the set of suitable search directions, we use nonmonotone line search rules in Chapter 5. Within that chapter, these rules are modied to t the variable sample size framework. Moreover, the conditions for the global convergence and the R-linear rate are presented.&nbsp;</p><p>In Chapter 6, numerical results are presented. The test problems&nbsp;are various - some of them are academic and some of them are real&nbsp;world problems. The academic problems are here to give us more&nbsp;insight into the behavior of the algorithms. On the other hand, data&nbsp;that comes from the real world problems are here to test the real&nbsp;applicability of the proposed algorithms. In the rst part of that&nbsp;chapter, the focus is on the variable sample size techniques. Different&nbsp;implementations of the proposed algorithm are compared to each other&nbsp;and to the other sample schemes as well. The second part is mostly&nbsp;devoted to the comparison of the various line search rules combined&nbsp;with dierent search directions in the variable sample size framework.&nbsp;The overall numerical results show that using the variable sample size&nbsp;can improve the performance of the algorithms signicantly, especially&nbsp;when the nonmonotone line search rules are used.</p><p>The rst chapter of this thesis provides the background material&nbsp;for the subsequent chapters. In Chapter 2, basics of the nonlinear&nbsp;optimization are presented and the focus is on the line search, while&nbsp;Chapter 3 deals with the stochastic framework. These chapters are&nbsp;here to provide the review of the relevant known results, while the&nbsp;rest of the thesis represents the original contribution.&nbsp;</p> / <p>U okviru ove teze posmatra se problem optimizacije bez ograničenja pri čcemu je funkcija cilja u formi matematičkog očekivanja. Očekivanje se odnosi na slučajnu promenljivu koja predstavlja neizvesnost. Zbog toga je funkcija cilja, u stvari, deterministička veličina. Ipak, odredjivanje analitičkog oblika te funkcije cilja može biti vrlo komplikovano pa čak i nemoguće. Zbog toga se za aproksimaciju često koristi uzoračko očcekivanje. Da bi se postigla dobra aproksimacija, obično je neophodan obiman uzorak. Ako pretpostavimo da se uzorak realizuje pre početka procesa optimizacije, možemo posmatrati uzoračko očekivanje kao determinističku funkciju. Medjutim, primena nekog od determinističkih metoda direktno na tu funkciju&nbsp; moze biti veoma skupa jer evaluacija funkcije pod ocekivanjem često predstavlja veliki tro&scaron;ak i uobičajeno je da se ukupan tro&scaron;ak optimizacije meri po broju izračcunavanja funkcije pod očekivanjem. Zbog toga su razvijeni metodi sa promenljivom veličinom uzorka. Većcina njih je bazirana na odredjivanju optimalne dinamike uvećanja uzorka.</p><p>Glavni cilj ove teze je razvoj algoritma koji, kroz smanjenje broja izračcunavanja funkcije, smanjuje ukupne tro&scaron;skove optimizacije. Ideja je da se veličina uzorka smanji kad god je to moguće. Grubo rečeno, izbegava se koriscenje velike preciznosti&nbsp; (velikog uzorka) kada smo daleko od re&scaron;senja. U čcetvrtom poglavlju ove teze opisana je nova klasa metoda i predstavljena je analiza konvergencije. Dokazano je da je aproksimacija re&scaron;enja koju dobijamo bar toliko dobra koliko i za metod koji radi sa celim uzorkom sve vreme.</p><p>Jo&scaron; jedna bitna karakteristika metoda koji su ovde razmatrani je primena linijskog pretražzivanja u cilju odredjivanja naredne iteracije. Osnovna ideja je da se nadje odgovarajući pravac i da se duž njega vr&scaron;si pretraga za dužzinom koraka koja će dovoljno smanjiti vrednost funkcije. Dovoljno smanjenje je odredjeno pravilom linijskog pretraživanja. U čcetvrtom poglavlju to pravilo je monotono &scaron;to znači da zahtevamo striktno smanjenje vrednosti funkcije. U cilju jos većeg smanjenja tro&scaron;kova optimizacije kao i pro&scaron;irenja skupa pogodnih pravaca, u petom poglavlju koristimo nemonotona pravila linijskog pretraživanja koja su modifikovana zbog promenljive velicine uzorka. Takodje, razmatrani su uslovi za globalnu konvergenciju i R-linearnu brzinu konvergencije.</p><p>Numerički rezultati su predstavljeni u &scaron;estom poglavlju. Test problemi su razliciti - neki od njih su akademski, a neki su realni. Akademski problemi su tu da nam daju bolji uvid u pona&scaron;anje algoritama. Sa druge strane, podaci koji poticu od stvarnih problema služe kao pravi test za primenljivost pomenutih algoritama. U prvom delu tog poglavlja akcenat je na načinu ažuriranja veličine uzorka. Različite varijante metoda koji su ovde predloženi porede se medjusobno kao i sa drugim &scaron;emama za ažuriranje veličine uzorka. Drugi deo poglavlja pretežno je posvećen poredjenju različitih pravila linijskog pretraživanja sa različitim pravcima pretraživanja u okviru promenljive veličine uzorka. Uzimajuci sve postignute rezultate u obzir dolazi se do zaključcka da variranje veličine uzorka može značajno popraviti učinak algoritma, posebno ako se koriste nemonotone metode linijskog pretraživanja.</p><p>U prvom poglavlju ove teze opisana je motivacija kao i osnovni pojmovi potrebni za praćenje preostalih poglavlja. U drugom poglavlju je iznet pregled osnova nelinearne optimizacije sa akcentom na metode linijskog pretraživanja, dok su u trećem poglavlju predstavljene osnove stohastičke optimizacije. Pomenuta poglavlja su tu radi pregleda dosada&scaron;njih relevantnih rezultata dok je originalni doprinos ove teze predstavljen u poglavljima 4-6.</p>

Identiferoai:union.ndltd.org:uns.ac.rs/oai:CRISUNS:(BISIS)85780
Date17 January 2014
CreatorsKrklec Jerinkić Nataša
ContributorsKrejić Nataša, Lužanin Zorana, Bellavia Stefania, Spalević Miodrag
PublisherUniverzitet u Novom Sadu, Prirodno-matematički fakultet u Novom Sadu, University of Novi Sad, Faculty of Sciences at Novi Sad
Source SetsUniversity of Novi Sad
LanguageEnglish
Detected LanguageUnknown
TypePhD thesis

Page generated in 0.003 seconds