Previously, we proposed and experimentally demonstrated enhanced recording speeds by using a resonant optical cavity to semi-passively increase the reference beam power while recording image bearing holograms. In addition to enhancing the reference beam power the cavity supports the orthogonal reference beam families of its eigenmodes, which can be used as a degree of freedom to multiplex data pages and increase storage densities for volume Holographic Data Storage Systems (HDSS). While keeping the increased recording speed of a cavity enhanced reference arm, image bearing holograms are multiplexed by orthogonal phase code multiplexing via Hermite-Gaussian eigenmodes in a Fe: LiNbO3 medium with a 532 nm laser at two Bragg angles for expedited recording of four multiplexed holograms. We experimentally confirmed write rates are enhanced by an average factor of 1.1, and page crosstalk is about 2.5%. This hybrid multiplexing opens up a pathway to increase storage density while minimizing modifications to current angular multiplexing HDSS.
Identifer | oai:union.ndltd.org:arizona.edu/oai:arizona.openrepository.com:10150/626291 |
Date | 23 August 2017 |
Creators | Miller, Bo E., Takashima, Yuzuru |
Contributors | Univ Arizona, Coll Opt Sci |
Publisher | SPIE-INT SOC OPTICAL ENGINEERING |
Source Sets | University of Arizona |
Language | English |
Detected Language | English |
Type | Article |
Rights | © (2017) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). |
Relation | https://www.spiedigitallibrary.org/conference-proceedings-of-spie/10384/2272613/Cavity-enhanced-eigenmode-multiplexing-for-volume-holographic-data-storage/10.1117/12.2272613.full |
Page generated in 0.0064 seconds