Return to search

Geometric Extensions of Neural Processes

Neural Processes (NPs) are a class of regression models that learn a map from a set of input-output pairs to a distribution over functions. NPs are computationally tractable and provide a number of benefits over traditional nonlinear regression models. Despite these benefits, there are two main domains where NPs fail. This thesis is focused on presenting extensions of the Neural Process to these two areas. The first of these is the extension of Neural Processes graph and network data which we call Graph Neural Processes (GNP). A Graph Neural Process is defined as a Neural Process that operates on graph data. It takes spectral information from the graph Laplacian as inputs and then outputs a distribution over values. We demonstrate Graph Neural Processes in edge value imputation and discuss benefits and drawbacks of the method for other application areas. The second extension of Neural Processes comes in the fundamental training mechanism. NPs are traditionally trained using maximum likelihood, a probabilistic technique. We show that there are desirable classes of problems where NPs fail to learn. We also show that this drawback is solved by using approximations of the Wasserstein distance. We give experimental justification for our method and demonstrate its performance. These Wasserstein Neural Processes (WNPs) maintain the benefits of traditional NPs while being able to approximate new classes of function mappings.

Identiferoai:union.ndltd.org:BGMYU2/oai:scholarsarchive.byu.edu:etd-9394
Date18 May 2020
CreatorsCarr, Andrew Newberry
PublisherBYU ScholarsArchive
Source SetsBrigham Young University
Detected LanguageEnglish
Typetext
Formatapplication/pdf
SourceTheses and Dissertations
Rightshttps://lib.byu.edu/about/copyright/

Page generated in 0.0039 seconds