Return to search

Multi-Objective and Multidisciplinary Design Optimisation of Unmanned Aerial Vehicle Systems using Hierarchical Asynchronous Parallel Multi-Objective Evolutionary Algorithms

Master of Engineering (Research) / The overall objective of this research was to realise the practical application of Hierarchical Asynchronous Parallel Evolutionary Algorithms for Multi-objective and Multidisciplinary Design Optimisation (MDO) of UAV Systems using high fidelity analysis tools. The research looked at the assumed aerodynamics and structures of two production UAV wings and attempted to optimise these wings in isolation to the rest of the vehicle. The project was sponsored by the Asian Office of the Air Force Office of Scientific Research under contract number AOARD-044078. The two vehicles wings which were optimised were based upon assumptions made on the Northrop Grumman Global Hawk (GH), a High Altitude Long Endurance (HALE) vehicle, and the General Atomics Altair (Altair), Medium Altitude Long Endurance (MALE) vehicle. The optimisations for both vehicles were performed at cruise altitude with MTOW minus 5% fuel and a 2.5g load case. The GH was assumed to use NASA LRN 1015 aerofoil at the root, crank and tip locations with five spars and ten ribs. The Altair was assumed to use the NACA4415 aerofoil at all three locations with two internal spars and ten ribs. Both models used a parabolic variation of spar, rib and wing skin thickness as a function of span, and in the case of the wing skin thickness, also chord. The work was carried out by integrating the current University of Sydney designed Evolutionary Optimiser (HAPMOEA) with Computational Fluid Dynamics (CFD) and Finite Element Analysis (FEA) tools. The variable values computed by HAPMOEA were subjected to structural and aerodynamic analysis. The aerodynamic analysis computed the pressure loads using a Boeing developed Morino class panel method code named PANAIR. These aerodynamic results were coupled to a FEA code, MSC.NastranĀ® and the strain and displacement of the wings computed. The fitness of each wing was computed from the outputs of each program. In total, 48 design variables were defined to describe both the structural and aerodynamic properties of the wings subject to several constraints. These variables allowed for the alteration of the three aerofoil sections describing the root, crank and tip sections. They also described the internal structure of the wings allowing for variable flexibility within the wing box structure. These design variables were manipulated by the optimiser such that two fitness functions were minimised. The fitness functions were the overall mass of the simulated wing box structure and the inverse of the lift to drag ratio. Furthermore, six penalty functions were added to further penalise genetically inferior wings and force the optimiser to not pass on their genetic material. The results indicate that given the initial assumptions made on all the aerodynamic and structural properties of the HALE and MALE wings, a reduction in mass and drag is possible through the use of the HAPMOEA code. The code was terminated after 300 evaluations of each hierarchical level due to plateau effects. These evolutionary optimisation results could be further refined through a gradient based optimiser if required. Even though a reduced number of evaluations were performed, weight and drag reductions of between 10 and 20 percent were easy to achieve and indicate that the wings of both vehicles can be optimised.

Identiferoai:union.ndltd.org:ADTP/283371
Date January 2007
CreatorsDamp, Lloyd Hollis
PublisherUniversity of Sydney., Engineering. School of Aeronautical Mechanical and Mechatronic Engineering
Source SetsAustraliasian Digital Theses Program
Detected LanguageEnglish
RightsThe author retains copyright of this thesis., http://www.library.usyd.edu.au/copyright.html

Page generated in 0.0181 seconds