Portfolio Management with Multiple Benchmarks Bc. Robert Navrátil Abstract: In this thesis, we study a maximal volatility portfolio that treats all assets in a symmetric way and related option contract. To preserve symmetry we need numeraire that treats all assets symmetrically. We choose market index with equal weights. In case of two assets we focus on a variation of a passport option on the portfolio. The optimal strategy for the investor is the mentioned maximal volatility portfolio. We extend the known optimal strategy for the option to a richer class of convex payoff functions. We also show a modification of the optimal strategy for maximizing the probability of ending above or at a desired level. We later extend the symmetric market model to case of three assets, which can be even further extended to an arbitrary number of assets. The three asset model requires more parameters than are observable from the data, however we show indistinguishably of the model on the choice of parameters under very natural conditions. Both numerical simulations and an application on real data is provided. 1
Identifer | oai:union.ndltd.org:nusl.cz/oai:invenio.nusl.cz:357223 |
Date | January 2017 |
Creators | Navrátil, Robert |
Contributors | Večeř, Jan, Pešta, Michal |
Source Sets | Czech ETDs |
Language | English |
Detected Language | English |
Type | info:eu-repo/semantics/masterThesis |
Rights | info:eu-repo/semantics/restrictedAccess |
Page generated in 0.0017 seconds