Return to search

Untersuchung und Herstellung faseroptischer Delay-Line-Filter zur Dispersionskompensation in optischen Übertragungssystemen

Die chromatische Dispersion ist in optischen Übertragungssystemen mit Datenraten von 10 Gbit/s und darüber einer der Faktoren, der die Länge der Übertragungsstrecke limitiert. Der Hauptteil der chromatischen Dispersion wird in solchen Übertragungssystemen in der Regel durch Dispersionskompensationsfasern ausgeglichen. Aufgrund von z.B. Umwelteinflüssen kann allerdings auch eine sich zeitlich ändernde Dispersion auftreten. Zur Eliminierung dieser Restdispersion wurden unterschiedliche Ansätze wie abstimmbare Faser-Bragg-Gitter, Virtually-Imaged-Phased-Arrays und Delay-Line-Filter publiziert. Delay-Line-Filter, deren periodisches Übertragungsverhalten durch die Filterkoeffizienten bestimmt wird, wurden bereits als Ring-Resonatoren und kaskadierte Mach-Zehnder-Interferometer in integriert-optischer Technologie hergestellt. Integriert-optische Komponenten verursachen aufgrund der Ankopplung an die Fasern des Übertragungssystems hohe Einfügeverluste. Darüber hinaus treten hohe Wellenleiterverluste, polarisationsabhängige Verluste und Polarisationsmodendispersion auf. Daher wird in dieser Arbeit die Realisierung faseroptischer Delay-Line-Filter, die auf faseroptischen Schmelzkopplern und faseroptischen Gewichtungselementen basieren, untersucht. Aufgrund der geometrischen Längen der faseroptischen Schmelzkoppler und der Größe der Gewichtungselemente können solche Filter allerdings nur mit einer geringen Filterordnung und mit einer geringen Anzahl von Gewichtungselementen hergestellt werden. Um mit Filtern niedriger Ordnung eine möglichst effektive Kompensation der Restdispersion zu erzielen, ist zunächst eine sorgfältige Untersuchung der Filtereigenschaften und des Filterentwurfs erforderlich. Durch systematische Untersuchung des Verhaltens der Filterdispersion in Abhängigkeit der Filterkoeffizienten wurden in dieser Arbeit hierzu erstmalig einfache Entwurfsregeln aufgestellt, die für Filter beliebiger Filterordnung zu annähernd konstantem Dispersionsverlauf führen. Auf dieser Grundlage konnte ein faseroptisches Delay-Line-Filter realisiert werden, das auf zwei in Reihe geschalteten faseroptischen 3x3 Schmelzkopplern basiert. Die Dispersion dieses Filters ist in einem Bereich von 50 GHz um die Mitte einer Filterperiode herum annähernd konstant und kann in einem Bereich von +/-50 ps/nm durch ein einzelnes thermisches Gewichtungselement abgestimmt werden. Aufgrund der faseroptischen Realisierung kann die Komponente problemlos in optische Übertragungsstrecken integriert werden und verursacht dabei Einfügeverluste von lediglich 3 dB. In Übertragungsexperimenten bei Datenraten von 42,5 Gbit/s konnte gezeigt werden, dass das Filter in der Lage ist die Dispersionstoleranz des Systems annähernd zu verdoppeln. Dies gilt sowohl für die Kompensation eines einzelnen Kanals als auch für die simultane Kompensation mehrerer benachbarter Übertragungskanäle mit je 42,5 Gbit/s. / Chromatic dispersion is a limiting factor in fast optical networks with channel bit rates of 10 Gbit/s or higher. The main part of the dispersion is usually compensated by spans of dispersion compensating fiber that have a fixed dispersion value. But the residual dispersion caused by environmental changes or rerouting has to be compensated adaptively. To overcome the effects of residual dispersion several approaches like tunable fiber Bragg gratings, virtually imaged phased arrays and delay line filters can be found in literature. The use of delay line filters like cascaded ring-resonators, multi-cavity etalons and cascaded Mach-Zehnder interferometers, whose periodic transfer behavior is determined by their coefficients, have already been developed in planar-optics. These components cause insertion loss due to the coupling to the fibers. Furthermore they suffer from high waveguide loss, non-negligible polarization dependent loss and polarization mode dispersion. In this thesis the realization of tunable delay line filters based on fiberoptic couplers and fiberoptic weighting elements is investigated. Due to the size of these components the filters can be realized with a limited order and a limited number of weighting elements, only. To fulfill these requirements a careful investigation of the filter design is necessary. By systematically investigating the dispersion of the filter depending on the filter coefficients simple design rules for non-recursive delay line filters with approximately constant dispersion are figured out. That enables the realization of a fiberoptic delay line filter, based on two 3x3 couplers concatenated in series. The dispersion of this filter is constant in a bandwidth of about 50 GHz around the center of a period and can be tuned in a range of +/-50 ps/nm by changing one single weighting element. Due to its nature this device causes low loss and can be easily integrated in an optical transmission system. In experiments it was demonstrated that by adding this filter to a 42.5 Gb/s transmission system the +/- 55 ps/nm dispersion tolerance of the optical receiver can almost be doubled - either in a single channel as well as in a multi channel configuration with five adjacent 42.5 Gb/s channels.

Identiferoai:union.ndltd.org:DRESDEN/oai:qucosa:de:qucosa:24575
Date02 September 2005
CreatorsDuthel, Thomas
ContributorsSchäffer, Christian G., Enning, Bernhard, Nowak, Walter
PublisherTechnische Universität Dresden
Source SetsHochschulschriftenserver (HSSS) der SLUB Dresden
LanguageGerman
Detected LanguageGerman
Typedoc-type:doctoralThesis, info:eu-repo/semantics/doctoralThesis, doc-type:Text
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.0026 seconds