Ce mémoire porte sur quelques notions appropriées d'actions de groupe sur les variétés symplectiques, à savoir en ordre décroissant de généralité : les actions symplectiques, les actions faiblement hamiltoniennes et les actions hamiltoniennes. Une connaissance des actions de groupes et de la géométrie symplectique étant prérequise, deux chapitres sont consacrés à des présentations élémentaires de ces sujets. Le cas des actions hamiltoniennes est étudié en détail au quatrième chapitre : l'importante application moment y est définie et plusieurs résultats concernant les orbites de la représentation coadjointe, tels que les théorèmes de Kirillov et de Kostant-Souriau, y sont démontrés. Le dernier chapitre se concentre sur les actions hamiltoniennes des tores, l'objectif étant de démontrer le théorème de convexité d'Atiyha-Guillemin-Sternberg. Une discussion d'un théorème de classification de Delzant-Laudenbach est aussi donnée. La présentation se voulant une introduction assez exhaustive à la théorie des actions hamiltoniennes, presque tous les résultats énoncés sont accompagnés de preuves complètes. Divers exemples sont étudiés afin d'aider à bien comprendre les aspects plus subtils qui sont considérés. Plusieurs sujets connexes sont abordés, dont la préquantification géométrique et la réduction de Marsden-Weinstein. / This Master thesis is concerned with some natural notions of group actions on symplectic manifolds, which are in decreasing order of generality : symplectic actions, weakly hamiltonian actions and hamiltonian actions. A knowledge of group actions and of symplectic geometry is a prerequisite ; two chapters are devoted to a coverage of the basics of these subjects. The case of hamiltonian actions is studied in detail in the fourth chapter : the important moment map is introduced and several results on the orbits of the coadjoint representation are proved, such as Kirillov's and Kostant-Souriau's theorems. The last chapter concentrates on hamiltonian actions by tori, the main result being a proof of Atiyah-Guillemin-Sternberg's convexity theorem. A classification theorem by Delzant and Laudenbach is also discussed. The presentation is intended to be a rather exhaustive introduction to the theory of hamiltonian actions, with complete proofs to almost all the results. Many examples help for a better understanding of the most tricky concepts. Several connected topics are mentioned, for instance geometric prequantization and Marsden-Weinstein reduction.
Identifer | oai:union.ndltd.org:umontreal.ca/oai:papyrus.bib.umontreal.ca:1866/11640 |
Date | 11 1900 |
Creators | Payette, Jordan |
Contributors | Lalonde, François |
Source Sets | Université de Montréal |
Language | French |
Detected Language | French |
Type | Thèse ou Mémoire numérique / Electronic Thesis or Dissertation |
Page generated in 0.0229 seconds