Dans ce mémoire de thèse, nous développons d'abord des multiplications matricielles efficaces. Nous créons de nouveaux ordonnancements qui permettent de réduire la taille de la mémoire supplémentaire nécessaire lors d'une multiplication du type Winograd tout en gardant une bonne complexité, grâce au développement d'outils externes ad hoc (jeu de galets), à des calculs fins de complexité et à de nouveaux algorithmes hybrides. Nous utilisons ensuite des technologies parallèles (multicœurs et GPU) pour accélérer efficacement la multiplication entre matrice creuse et vecteur dense (SpMV), essentielles aux algorithmes dits /boîte noire/, et créons de nouveaux formats hybrides adéquats. Enfin, nous établissons des méthodes de /design/ générique orientées vers l'efficacité, notamment par conception par briques de base, et via des auto-optimisations. Nous proposons aussi des méthodes pour améliorer et standardiser la qualité du code de manière à pérenniser et rendre plus robuste le code produit. Cela permet de pérenniser de rendre plus robuste le code produit. Ces méthodes sont appliquées en particulier à la bibliothèque de calcul exact LinBox.
Identifer | oai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00767915 |
Date | 21 June 2012 |
Creators | Boyer, Brice |
Publisher | Université de Grenoble |
Source Sets | CCSD theses-EN-ligne, France |
Language | fra |
Detected Language | French |
Type | PhD thesis |
Page generated in 0.0019 seconds