A geometallurgical model is the combination of a spatial model representing an ore deposit and a process model representing the comminution and concentration steps in beneficiation. The process model itself usually consists of several unit models. Each of these unit models operates at a given level of detail in material characterization - from bulk chemical elements, elements by size, bulk minerals and minerals by size to the liberation level that introduces particles as the basic entity for simulation (Paper 1). In current state-of-the-art process simulation, few unit models are defined at the particle level because these models are complex to design at a more fundamental level of detail, liberation data is hard to measure accurately and large computational power is required to process the many particles in a flow sheet. Computational cost is a consequence of the intrinsic complexity of the unit models. Mineral liberation data depends on the quality of the sampling and the polishing, the settings and stability of the instrument and the processing of the data. This study introduces new tools to simulate a population of mineral particles based on intrinsic characteristics of the feed ore. Features are extracted at the meso-textural level (drill cores) (Paper 2), put in relation to their micro-textures before breakage and after breakage (Paper 3). The result is a population of mineral particles stored in a file format compatible to import into process simulation software. The results show that the approach is relevant and can be generalized towards new characterization methods. The theory of image representation, analysis and ore texture simulation is briefly introduced and linked to 1-point, 2-point, and multiple-point methods from spatial statistics. A breakage mechanism is presented as a cellular automaton. Experimental data and examples are taken from a copper-gold deposit with a chalcopyrite flotation circuit, an iron ore deposit with a magnetic separation process. This study is covering a part of a larger research program, PREP (Primary resource efficiency by enhanced prediction). / PREP
Identifer | oai:union.ndltd.org:UPSALLA1/oai:DiVA.org:ltu-63270 |
Date | January 2017 |
Creators | Koch, Pierre-Henri |
Publisher | Luleå tekniska universitet, Mineralteknik och metallurgi, Luleå |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | English |
Type | Licentiate thesis, comprehensive summary, info:eu-repo/semantics/masterThesis, text |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Relation | Licentiate thesis / Luleå University of Technology, 1402-1757 |
Page generated in 0.0023 seconds