Return to search

Estoques e mecanismos de estabilização do carbono orgânico do solo em agroecossistemas de clima temperado e sub-tropical / Soil organic carbon stocks and stabilization mechanisms on temperate and sub-tropical climate agroecosystems

Conselho Nacional de Desenvolvimento Científico e Tecnológico / Soil carbon (C) sequestration in agriculture soil is a low cost option to mitigate global climatic change. No-till (NT) associated with good husbandry practices could compensate up to 15% of the anthropogenic CO2 emissions by storing the C from atmosphere as soil organic carbon (SOC). To be fully accepted as a mitigation alternative, research must be conducted to improve the accuracy of soil C sequestration estimates on field experiments as well as those made by mathematical models at regional and local scales. Complementarily, is necessary to improve the knowledge about the SOC stabilization mechanisms, delimiting the real soil´s capacity into accumulate C, quantifying how much of the stored C could be re-emitted to the atmosphere by changes in soil management. The present work is divided in four chapters with the objective to answer these questions. The first chapter has the objective to discuss the importance of sampling depth (0-0.30, 0-0.60, and 0-0.90 m) and the definition of a reliable and adequate baseline for the calculation of the C sequestration rates. Two long-term field experiments from a temperate (Mollisol) and a sub-tropical (Oxisol) climate soil were selected for this research. The experiments tested soil tillage systems (conventional tillage (CT) and NT) (Mollisol and Oxisol) and sources and rates of nitrogen amendment on corn in the Mollisol (control without N, 168 kg N ha-1 as ammonium sulfate, and 168 kg N ha-1 as organic fertilizer) and different crop rotation systems in the Oxisol (R0:soybean-wheat, R1:soybean-wheat-soybean-oat, and R2:soybean-oat-soybean-oat+vetch-corn-radish-wheat). The increase of sampling depth provided limited contribution to the estimates of C sequestration rates due to the increase of the error on SOC stocks estimates at deeper soil depths. To improve the C sequestration rate estimates, SOC temporal dynamic analysis should be preferred rather than the comparison of the SOC stocks of paired plots at a unique time point. The second chapter had the objective to apply simple mathematical equations to describe the SOC dynamics and improve the estimates of C sequestration rates and also to understand the role of the macroaggregate formation on SOC accumulation and saturation. The use of linear and kinetic (exponential growth) equation was adequate to describe the SOC dynamics increasing the accuracy of the C sequestration rate estimates by reducing errors promoted by soil spatial variability. The SOC accumulation was a function of the amount of C input to the soil and the macroaggregate formation to protect SOC. The SOC saturation process occurred from the smaller to the larger aggregate size fraction, limiting the capacity of a given superficial soil layer to accumulate SOC. However, the SOC saturation at superficial soil layers did not indicate the end of C sequestration in the soil, since the SOC accumulation occurred at sub-superficial soil layers. In the third chapter, the mathematical approach to determine changes on SOC stocks and the SOC saturation-induced limitation for C sequestration were applied to improve the accuracy of the Hénin e Dupuís (1945) one-
8
compartmental mathematical model into predict future soil C sequestration rates. The long-term field experiment from the Mollisol was selected for this research because of the better data availability (sampling years) and also by the presence of two treatments under CT and NT with SOC saturated soil layers. The mathematical adjustment (by linear equations) of the SOC dynamic coefficients improved the adjustment of the model‟s predictions. The SOC saturation-induced restriction for SOC accumulation on the mathematical model avoided the overestimation of the soil‟s potential for C sequestration. The predictions of the mathematical models indicate that the Mollisol‟s superficial layer (0-0.05 m) under NT could maintain significant C sequestration rates for up to 50 years as a function of the amount of C input to the soil. For the fourth chapter, a detailed study of the SOC pools in water-stable aggregate size fractions by granulometric and densimetric fractionation was carried out. The objective was to identify the pools where SOC accumulation was occurring and what SOC stabilization mechanisms were present. This will provide estimates of the NT potential to promote long-term C sequestration. SOC accumulation occurred preferentially in the more stable and recalcitrant SOC fractions (Mollisol and Oxisol) or in microaggregate and macroaggregate physically protected fractions (Mollisol). In the Oxisol, the SOC enrichment occurred mostly in the mineral associated-SOC fractions extra-microaggregates occluded within meso- and macroaggregates, while in the Mollisol, the SOC accumulation occurred in both intra- and extra-microaggregate mineral associated-SOC fractions. More than 78 and 92% of the C sequestration verified in the Mollisol and Oxisol, respectively, were considered as long-term by occurring in stable SOC fractions. / O seqüestro de carbono (C) em solos agrícolas é uma opção de baixo custo para mitigação das mudanças climáticas globais. O plantio direto (PD), associado a boas práticas agronômicas, pode compensar até 15% das emissões antrópicas de CO2 ao armazenar o C drenado da atmosfera na forma de carbono orgânico (CO) do solo. Para ser amplamente aceito como alternativa de mitigação, pesquisas devem ser conduzidas a fim de melhorar a precisão das estimativas de taxas de seqüestro de C em experimentos de campo, assim como as previsões feitas por modelos matemáticos em escalas regionais e locais. Complementarmente, é necessário aprimorar o conhecimento sobre os mecanismos de estabilização do CO, delimitando a capacidade real do solo em acumular C e quantificando quanto do C acumulado no solo pode ser re-emitido para atmosfera por mudança no manejo do solo. Desta maneira, o presente trabalho se divide em quatro capítulos com o objetivo de abordar estas questões. O primeiro capítulo tem por objetivo discutir a importância da profundidade de amostragem (0-0,30; 0-0,60; 0-0,90 m) e da definição de situações de linhas-base confiáveis a adequadas para o cálculo das taxas de seqüestro de C. Para isto, foram utilizados dois experimentos de longa duração sobre um solo de clima temperado (Mollisol) e outro de clima sub-tropical (Oxisol). Os experimentos testaram efeitos de sistema de preparo do solo (preparo convencional (PC) e PD) (Mollisol e Oxisol) e fontes e doses de nitrogênio para o milho no Mollisol (testemunha (T), 168 kg N ha-1 na forma de sulfato de amônia (AM) e 168 kg N ha-1 na forma de adubo orgânico (AO)) e diferentes sistemas de rotação de culturas no Oxisol (R0:soja-trigo, R1:soja-trigo-soja-aveia e R2:soja-aveia-soja-aveia+ervilhaca-milho-nabo-trigo). O aumento da profundidade de amostragem não contribuiu com a melhoria das estimativas de taxas de seqüestro de C devido ao aumento do erro nas estimativas dos estoques de CO nas camadas mais profundas de solo. Para melhoria das estimativas das taxas de seqüestro de C devem-se preferir análises temporais da dinâmica do CO no solo ao invés da comparação de estoques de CO em um único momento. O segundo capítulo tem por objetivo aplicar equações matemáticas simples para descrever a dinâmica do CO e melhorar as estimativas taxas de seqüestro de C e também entender o papel da formação de macroagregados no acúmulo e saturação de CO no solo. O uso de equações lineares e cinéticas (crescimento exponencial) foi adequado para descrever a dinâmica do CO, aumentando a precisão das estimativas de taxas de seqüestro de C ao reduzir os erros de estimativa por variabilidade espacial do solo. O acúmulo de CO no solo mostrou-se uma função da quantidade de C aportada ao solo por resíduos vegetais e a formação de macroagregados no solo para proteção do CO. O processo de saturação do solo ocorreu das menores para as maiores frações de agregados do solo, limitando a capacidade de uma
6
determinada camada de solo em acumular CO. No entanto, verificou-se que a saturação de camadas superficiais de solo não indica o fim do seqüestro de C neste solo, visto que o acúmulo de CO passa a ocorrer em camadas sub-superficiais. No terceiro capítulo, a aproximação matemática para determinar mudanças nos estoques de CO e a limitação na capacidade do solo em acumular CO promovida pelo processo de saturação dos agregados do solo foram aplicados para melhorar a precisão do modelo matemático uni-compartimental de Hénin e Dupuís (1945) em prever futuras taxas de seqüestro de C. O Mollisol foi escolhido para este estudo em função da maior disponibilidade de dados (anos de amostragem) e também pela presença de dois tratamentos em PC e PD com camada de solo saturada por CO. O ajuste matemático (por equações lineares) dos coeficientes da dinâmica do CO melhorou o ajuste das previsões do modelo com os dados observados. A restrição do modelo matemático quanto à capacidade do solo em acumular CO (saturação de CO) evitou a superestimação do potencial de seqüestro de C deste solo. As previsões do modelo matemático indicam que a camada superficial (0-0,05 m) do solo sob PD pode apresentar taxas significativas de seqüestro de C por até 50 anos, em função da quantidade de C adicionada ao solo. No quarto capítulo, foi realizado um estudo detalhado dos compartimentos do CO em função da sua distribuição em classes de tamanhos de agregados estáveis em água e o fracionamento granulométrico e densimétrico do CO. O objetivo foi identificar em quais compartimentos está ocorrendo o acúmulo de CO no solo, os mecanismos de estabilização do CO, estimando o potencial do PD em promover sequestro de C de longa duração. Verificou-se que o acúmulo de C ocorre preferencialmente em frações mais estáveis e recalcitrantes do CO (Mollisol e Oxisol) ou em frações protegidas fisicamente por micro e macroagregados (Mollisol). No Oxisol, o enriquecimento de CO ocorre principalmente nas frações de CO associadas aos minerais extra-microaggregados oclusas em meso e macroagregados de solo, enquanto que no Mollisol, o acumulo de CO ocorre tanto na fração intra como extra microagregados. Mais de 78 e 92% do seqüestro de C verificado no Mollisol e Oxisol, repectivamente, foi considerado de longa duração por ocorrer em frações estáveis do CO.

Identiferoai:union.ndltd.org:IBICT/oai:repositorio.ufsm.br:1/3574
Date21 June 2009
CreatorsNicoloso, Rodrigo da Silveira
ContributorsAmado, Telmo Jorge Carneiro, Bayer, Cimélio, Sá, João Carlos de Moraes, Eltz, Flavio Luiz Foletto
PublisherUniversidade Federal de Santa Maria, Programa de Pós-Graduação em Engenharia Agrícola, UFSM, BR, Engenharia Agrícola
Source SetsIBICT Brazilian ETDs
LanguagePortuguese
Detected LanguagePortuguese
Typeinfo:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/doctoralThesis
Formatapplication/pdf
Sourcereponame:Repositório Institucional da UFSM, instname:Universidade Federal de Santa Maria, instacron:UFSM
Rightsinfo:eu-repo/semantics/openAccess
Relation500300000008, 400, 500, 300, 500, 300, 300, 8744c75f-e323-495a-80de-7684a957d85e, 6cf33c69-2d96-4c46-a057-e894c9468243, 7a3b6385-8038-4245-8924-c3e290bf2789, 32541cbb-675c-48a1-b349-d36d5f109d4e, cdae6b0c-3ca4-4281-8b87-30c0315146ec

Page generated in 0.008 seconds