Climatic variations and human activity now and increasingly in the future cause land cover changes and introduce perturbations in the terrestrial carbon reservoirs in vegetation, soil and detritus. Optical remote sensing and in particular Imaging Spectroscopy has shown the potential to quantify land surface parameters over large areas, which is accomplished by taking advantage of the characteristic interactions of incident radiation and the physico-chemical properties of a material.
The objective of this thesis is to quantify key soil parameters, including soil organic carbon, using field and Imaging Spectroscopy. Organic carbon, iron oxides and clay content are selected to be analyzed to provide indicators for ecosystem function in relation to land degradation, and additionally to facilitate a quantification of carbon inventories in semiarid soils. The semiarid Albany Thicket Biome in the Eastern Cape Province of South Africa is chosen as study site. It provides a regional example for a semiarid ecosystem that currently undergoes land changes due to unadapted management practices and furthermore has to face climate change induced land changes in the future.
The thesis is divided in three methodical steps. Based on reflectance spectra measured in the field and chemically determined constituents of the upper topsoil, physically based models are developed to quantify soil organic carbon, iron oxides and clay content. Taking account of the benefits limitations of existing methods, the approach is based on the direct application of known diagnostic spectral features and their combination with multivariate statistical approaches. It benefits from the collinearity of several diagnostic features and a number of their properties to reduce signal disturbances by influences of other spectral features.
In a following step, the acquired hyperspectral image data are prepared for an analysis of soil constituents. The data show a large spatial heterogeneity that is caused by the patchiness of the natural vegetation in the study area that is inherent to most semiarid landscapes. Spectral mixture analysis is performed and used to deconvolve non-homogenous pixels into their constituent components. For soil dominated pixels, the subpixel information is used to remove the spectral influence of vegetation and to approximate the pure spectral signature coming from the soil. This step is an integral part when working in natural non-agricultural areas where pure bare soil pixels are rare. It is identified as the largest benefit within the multi-stage methodology, providing the basis for a successful and unbiased prediction of soil constituents from hyperspectral imagery. With the proposed approach it is possible (1) to significantly increase the spatial extent of derived information of soil constituents to areas with about 40 % vegetation coverage and (2) to reduce the influence of materials such as vegetation on the quantification of soil constituents to a minimum.
Subsequently, soil parameter quantities are predicted by the application of the feature-based soil prediction models to the maps of locally approximated soil signatures. Thematic maps showing the spatial distribution of the three considered soil parameters in October 2009 are produced for the Albany Thicket Biome of South Africa. The maps are evaluated for their potential to detect erosion affected areas as effects of land changes and to identify degradation hot spots in regard to support local restoration efforts. A regional validation, carried out using available ground truth sites, suggests remaining factors disturbing the correlation of spectral characteristics and chemical soil constituents.
The approach is developed for semiarid areas in general and not adapted to specific conditions in the study area. All processing steps of the developed methodology are implemented in software modules, where crucial steps of the workflow are fully automated. The transferability of the methodology is shown for simulated data of the future EnMAP hyperspectral satellite. Soil parameters are successfully predicted from these data despite intense spectral mixing within the lower spatial resolution EnMAP pixels.
This study shows an innovative approach to use Imaging Spectroscopy for mapping of key soil constituents, including soil organic carbon, for large areas in a non-agricultural ecosystem and under consideration of a partially vegetation coverage. It can contribute to a better assessment of soil constituents that describe ecosystem processes relevant to detect and monitor land changes. The maps further provide an assessment of the current carbon inventory in soils, valuable for carbon balances and carbon mitigation products. / Klimatische und anthropogene Faktoren verursachen bereits jetzt und verstärkt in Zukunft Änderungen der Landbedeckung und Landnutzung natürlicher Ökosysteme, die sich direkt auf die terrestrischen Kohlenstoffspeicher in Vegetation, Böden und biogenen Resten auswirken. Optische Fernerkundung und im Besonderen die Abbildende Spektroskopie sind etablierte Methoden, die basierend auf der charakteristischen Wechselwirkung der Sonnenstrahlung mit physikalisch-chemischen Materialeigenschaften eine quantitative Abschätzung degradationsrelevanter Parameter der Landoberfläche erlauben.
Das Ziel dieser Arbeit ist die Quantifizierung maßgeblicher Bodeninhaltsstoffe unter Verwendung von Feld- und abbildender Spektroskopie. Dabei stehen organischer Kohlenstoff, Eisenoxide und Ton im Fokus der Betrachtung, da ihre Gehalte im Boden als Indikatoren für Landoberflächenveränderungen verwendet werden können und ihre Analyse gleichzeitig eine direkte Abschätzung des bodengebundenen Kohlenstoffreservoirs ermöglicht. Das semiaride Albany Thicket in der östlichen Kapprovinz Südafrikas wurde als Arbeitsgebiet ausgewählt. Es steht beispielhaft für einen Naturraum, der sich gegenwärtig durch nicht angepasste Landnutzung verändert und der voraussichtlich auch in Zukunft hochfrequenten, durch den Klimawandel bedingten, Schwankungen unterliegen wird.
Die Arbeit ist in drei methodische Schritte untergliedert. Die einzelnen Prozessierungsschritte der entwickelten Methodik sind in Softwaremodulen umgesetzt, in denen die wichtigsten Schritte voll automatisiert sind. Unter Verwendung von im Feld gemessenen Reflektanzspektren und chemisch bestimmten Gehalten der obersten Bodenschicht wird ein Modell zur Bestimmung der drei ausgewählten Bodenparameter erstellt. Der gewählte Ansatz basiert auf der direkten Verwendung bekannter spektraler Merkmale in Verbindung mit multivariaten Verfahren.
In nächsten Schritt werden die großflächig aufgenommenen Hyperspektraldaten vorbereitet, die die für semiaride Räume typischen kleinräumigen Landbedeckungsänderungen wiederspiegeln. Auf subpixel-Basis erlaubt eine spektrale Entmischungsanalyse die Zerlegung nicht homogener Bildspektren in ihre spektralen Bestandteile. Dadurch kann für Pixel, die signifikante Anteile an unbedecktem Boden aufweisen, die reine spektrale Signatur des Bodens in Näherung bestimmt werden. Diese Vorgehensweise kennzeichnet einen wesentlichen Gewinn, da er eine Anwendung auf heterogene Naturräume abseits landwirtschaftlicher Flächen erlaubt, die Ausdehnung des Gültigkeitsbereichs, für den Bodeneigenschaften vorhergesagt werden können, deutlich steigert und den Einfluss von Fremdmaterialien wie Vegetation auf eine Bestimmung minimiert.
Daran anknüpfend erfolgt die Vorhersage von Bodeninhaltsstoffen. Die räumliche Verteilung von organischem Kohlenstoff, Eisenoxiden und der Tongehalte wie sie sich im Oktober 2009 im südafrikanischen Albany Thicket darstellte, wurde in thematischen Karten erfasst. Sie wurden hinsichtlich ihres Potentials ausgewertet, Bereiche zu erkennen, die in Folge von Landbedeckungsänderungen von Erosion betroffen sind.
Die vorliegende Arbeit zeigt einen innovativen Ansatz zur Verwendung Abbildender Spektroskopie zur Kartierung wichtiger Bodeneigenschaften in einem semiariden Naturraum. Die Methodik liefert einen Beitrag zur verbesserten Abschätzung ökosystemrelevanter Bodeneigenschaften sowie eine direkte Abschätzung vorhandener Kohlenstoffspeicher im Boden, Parameter, die zur Erkennung und Überwachung von Landbedeckungsänderungen verwendet werden können.
Identifer | oai:union.ndltd.org:Potsdam/oai:kobv.de-opus-ubp:6439 |
Date | January 2012 |
Creators | Bayer, Anita |
Publisher | Universität Potsdam, Mathematisch-Naturwissenschaftliche Fakultät. Institut für Erd- und Umweltwissenschaften |
Source Sets | Potsdam University |
Language | English |
Detected Language | English |
Type | Text.Thesis.Doctoral |
Format | application/pdf |
Rights | http://creativecommons.org/licenses/by-nc-sa/3.0/de/ |
Page generated in 0.0137 seconds