Nanoscale Supramolecular Chemistry—interfacing molecular recognition and nanosized inorganic materials was explored in this work. Initial work focused on the incorporation of molecular recognition elements into the monolayers of gold nanoparticles, allowing for the creation of entities capable of partaking in multivalent interactions with solution phase guests. The effect of the radial nature of monolayers formed on nanoparticles was explored; here, increased packing density near the nanoparticle surface allowed for the increased effectiveness of multivalent binding sites. Molecular recognition element functionalized nanoparticles can also be designed to interact with polymers functionalized with complimentary recognition elements, enabling a “Bricks-and-Mortar” nanoparticle self-assembly process. Control over either assembly size or particle spacing is possible when either diblock copolymers or dendrimers, respectively, are employed as the “Mortar”. Finally, monolayer chemistry of γ-Fe 2O3 nanoparticles was also described, and the application of “Bricks-and-Mortar” assembly to the fabrication of magnetic materials was accomplished.
Identifer | oai:union.ndltd.org:UMASS/oai:scholarworks.umass.edu:dissertations-3694 |
Date | 01 January 2002 |
Creators | Boal, Andrew Kiskadden |
Publisher | ScholarWorks@UMass Amherst |
Source Sets | University of Massachusetts, Amherst |
Language | English |
Detected Language | English |
Type | text |
Source | Doctoral Dissertations Available from Proquest |
Page generated in 0.0018 seconds