Return to search

Metals in Dynamic Chemistry: Selection & Catalysis

In the adaptation to the oxidative environment on earth, metals played a crucial role for the evolution of life. The presence of metals also allowed access to advanced functions due to their unique coordination sphere and reactivity. This thesis focused on exploiting these unique properties for further development of the field of dynamic chemistry – a field in which adaptation plays a central role as well. The first part of the thesis aimed to create a better understanding of multivalent effects in carbohydrate-lectin interactions. By reversible ligand coordination to zinc ions one of the nanoplatforms, the Borromean rings, could be selectively obtained. After carbohydrate functionalization the binding events were monitored by quartz crystal microbalance technology and compared to glycosylated fullerenes and dodecaamide cages. Overall, this investigation indicated that statistical and polyelectrolyte effects play a considerable role in the observed multivalent effects. The second part of the thesis aimed to design and synthesize a new catalyst for application in aqueous olefin metathesis. This afforded a ruthenium based catalyst that was applied in the self- and cross-metathesis of highly functionalized substrates, such as carbohydrates. In addition, it was shown that addition of a small amount of acetic acid prevented undesired double bond isomerization. The last part of the thesis aimed to explore new methods to discover transition metal catalysts. Dynamic exchange of directing groups generated a pool of potential substrates for C-H activation. Combining this pool of substrates with a pool of potential catalysts resulted in amplification of a reactive substrate/metal combination. By iterative deconvolution in combination with mass spectrometry, this “intermediate” could be identified from the mixture, proving applicability of this alternative approach to catalyst discovery. / <p>QC 20170809</p>

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:kth-211492
Date January 2017
CreatorsTimmer, Brian J.J.
PublisherKTH, Organisk kemi, Stockholm
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageEnglish
TypeDoctoral thesis, comprehensive summary, info:eu-repo/semantics/doctoralThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess
RelationTRITA-CHE-Report, 1654-1081 ; 2017:32, info:eu-repo/grantAgreement/EC/FP7/289033

Page generated in 0.0025 seconds