Return to search

Polymerization of Polar Monomers from a Theoretical Perspective

Density functional theory calculations have been used to investigate catalytic mechanism of polymer formation containing polar groups, from the synthesis of the monomer to the synthesis of the macromolecule. In the spirit of a sustainable and green chemistry, we initially focused attention on the coupling of CO2 as economically convenient and recyclable C1 source with C2H4 to form acrylate and/or butirro-lactone, two important polar monomers. In this process formation of a mettallolactone via oxidative coupling of CO2 and C2H4 is an important intermediate. Given this background, we explored in detail (chapter-3) several Ni based catalysts for CO2 coupling with C2H4 to form acrylate. In this thesis we report on the competitive reaction mechanisms (inner vs outer sphere) for the oxidative coupling of CO2 and ethylene for a set of 11 Ni-based complexes containing bisphosphine ligands. In another effort, considering incorporation of a C=C bond into a metal-oxygen-Functional-Group moiety is a challenging step in several polymerization reactions, we explored the details of this reaction (chapter4) using two different catalysts that are capable to perform this reaction in the synthesis of heterocycles. Specifically, the [Rh]-catalyzed intramolecular alkoxyacylation ([Rh] = [RhI(dppp)+] (dppp, 1,3-Bis-diphenylphosphino-propane), and the [Pd]/BPh3 intramolecular alkoxyfunctionalizations. Rest of the thesis we worked on understanding the details of the polymerization of polar monomers using organocatalysts based on N-heterocyclic carbenes (NHC) or N-heterocyclic olefins (NHO). In particular (chapter-5) we studied the polymerization of N-methyl N-carboxy- anhydrides, towards cyclic poly(N-substituted glycine)s, promoted by NHC catalysts. In good agreement with the experimental findings, we demonstrated that NHC promoted ring opening polymerization of N-Me N-Carboxyanhydrides may proceed via two different catalytic pathways. In a similar effort we studied polymerization of propylene oxide (PO) (chapter-6) promoted by N-heterocyclic olefins (NHO) in combination with benzylic alcohol (BnOH). Calculations support the experimental observation that there might be two different catalytic pathways namely the anionic and the zwitterionic pathways. Potential energy surfaces analysis suggested in different NHO one or other mechanism is operational which is strongly depends on steric and electronic properties of particular NHO taken in account.

Identiferoai:union.ndltd.org:kaust.edu.sa/oai:repository.kaust.edu.sa:10754/621087
Date11 October 2016
CreatorsAlghamdi, Miasser
ContributorsCavallo, Luigi, Physical Science and Engineering (PSE) Division, Basset, Jean-Marie, Saikaly, Pascal, Talarico, Giovanni
Source SetsKing Abdullah University of Science and Technology
LanguageEnglish
Detected LanguageEnglish
TypeDissertation
Rights2017-10-20, At the time of archiving, the student author of this dissertation opted to temporarily restrict access to it. The full text of this dissertation became available to the public after the expiration of the embargo on 2017-10-20.

Page generated in 0.0014 seconds