The use of transition metals in synthesis is an incredibly useful tool for organic chemists. Co-ordination of a metal can occur with most function groups in some manner resultingin dramatic changes in the reactivity. Decarboxylative cross-couplings provide a new route to the construction of C–C bondswithout the necessity of costly organometallic precursors. Similarly C–H activationprovides an environmentally and economically desirable method to cross-couplingproducts, and this can be facilitated by the presence of ortho-directing groups. Thedecarboxylative coupling of carboxylic acids, combined with carboxylate directed C–Hactivation has been investigated to demonstrate ortho-arylation and acylation of benzoicacids. In doing so the different functionality of the carboxylate group is demonstrated inone process. Following this, a mild ZnEt2 mediated 1,5-substituted 1,2,3-triazole formation reactionhas been investigated. Significantly, this method is compatible with many differentsubstrates including halides, esters, nitriles, ketones and amides which have proven to beincompatible with analogous Mg or Li methods. The resultant heteroaryl zinc can beutilised further in cross-coupling reactions, or with other electrophiles, enabling theformation of a wide range of substituted triazoles.
Identifer | oai:union.ndltd.org:bl.uk/oai:ethos.bl.uk:654840 |
Date | January 2015 |
Creators | Ashwood, Sarah |
Contributors | Greaney, Michael |
Publisher | University of Manchester |
Source Sets | Ethos UK |
Detected Language | English |
Type | Electronic Thesis or Dissertation |
Source | https://www.research.manchester.ac.uk/portal/en/theses/late-transition-metals-in-the-synthesis-of-arenes-and-heteroarenes(fccd7d85-3059-4667-9ffb-8372a8aa852a).html |
Page generated in 0.0028 seconds