La quinone réductase 2 ou QR2 est une enzyme qui, comme son homologue QR1, joue un rôle de détoxification des quinones, molécules fortement réactives, en les réduisant en hydroquinones. Cependant, il a été observé au niveau cellulaire et tissulaire que l'activité de cette flavoprotéine pouvait avoir des effets délétères en déclenchant une surproduction d'espèces réactives de l'oxygène (ROS). D'autre part, on observe une surexpression ou une sous expression de QR2 dans certaines maladies neurodégénératives comme la maladie de Parkinson et la maladie d'Alzheimer. Dans ce contexte, ce travail a porté sur l'étude des espèces oxygénées réactives produites lors du cycle redox quinone / QR2 et leurs variations en fonction de la nature de la quinone, sur protéine purifiée et sur modèles cellulaires comparativement à QR1. Les propriétés d'oxydo-réduction des substrats, co-substrats et inhibiteurs de QR2 étudiées par électrochimie ont permis de les classer en fonction de leur capacité à être réduits. L'activité enzymatique de la protéine, qu'elle soit purifiée ou intracellulaire, a été suivie par différentes méthodologies (résonance paramagnétique électronique, spectroscopie UV-visible et de fluorescence, U(H)PLC-MS, microscopie confocale de fluorescence). La production du radical superoxyde est observée en présence de lignées cellulaires surexprimant ou non QR1 et QR2. Les quinones sont réduites enzymatiquement pour donner des hydroquinones via l'activité des quinones réductases (QR1 et QR2) et des semiquinones via l'activité de réductases à un électron (CytP540 réductase par exemple). La réoxydation de ces produits est responsable d'une production plus ou moins forte de radicaux superoxydes selon la structure initiale de la quinone et l'affinité pour les différentes réductases. La ménadione provoque une production cellulaire de superoxyde plus importante en l'absence de QR1 et QR2. Ces analyses ont également démontré que, comme son homologue QR1, QR2 est capable de réduire les ortho-quinones dont certaines catécholquinones (aminochrome, dopachrome, adrénochrome) reconnues pour leur toxicité neuronale. / Quinone reductase 2 or QR2 is an enzyme that, like its counterpart QR1, plays a role in detoxification of the highly reactives quinones by reducing them into hydroquinones. On one hand, it has been observed at the cellular and tissue level that the activity of this flavoprotein could have deleterious effects by triggering an overproduction of reactive oxygen species (ROS). On the other hand, overexpression or under expression of QR2 has been observed in some neurodegenerative diseases such as Parkinson's disease and Alzheimer's disease. In this context, this work focused on the study of reactive oxygen species produced during the quinone / QR2 redox cycle and their variations depending on the nature of the quinone, on both purified protein and cell models, in comparison to QR1. The redox properties of the substrates, co-substrates and inhibitors ok QR2 studied by electrochemistry allowed to classify them according to their capacity to be reduced. The enzymatic activity of the protein, either purified or intracellular, was followed by various methodologies (electron paramagnetic resonance, UV-visible and fluorescence spectroscopy, U(H)PLC-MS, confocal fluorescence microscopy). Production of superoxide radical is observed in the presence of cell lines overexpressing or not QR1 and QR2. Quinones are reduced enzymatically to form hydroquinones via the activity of quinone reductase (QR1 and QR2) and semiquinone via the activity of one electron reductases (e.g. CytP540 reductase). Reoxidation of these products is responsible for a greater or lesser production of the superoxide radical, according to the initial structure of the quinone and the affinity for different reductases. Menadione causes a higher production of cellular superoxide in the absence of QR1 and QR2. These analyzes have also shown that, like its counterpart QR1, QR2 is capable of reducing ortho-quinones including catecholquinones (aminochrome, dopachrome, adrenochrome) known for their neuronal toxicity.
Identifer | oai:union.ndltd.org:theses.fr/2015TOU30148 |
Date | 28 September 2015 |
Creators | Cassagnes, Laure-Estelle |
Contributors | Toulouse 3, Nepveu, Françoise |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | French |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.0062 seconds