The main topic of this research is the simulation of internal wave interaction by a two-dimensional numerical model developed by Lynett & Liu (2002) of Cornell University, then modified by Cheng et al. (2005). The governing equation includes two-dimensional momentum and continuity equation. The model uses constant upper and lower layer densities; hence, these factors as well as the upper layer thickness. Should be determined before the simulation. This study discusses the interface depth and the density according to the buoyancy frequency distribution, the EOF, and the eigen-value based on the measured density profile. Besides, a method based on the two-layer KdV equation and the KdV of continuously-stratified fluid. By minimize the difference of linear celeriy, nonlinear and dispersion terms, the upper layer thicknes can also be determined. However, the interface will be much deeper than the depth of max temperature drop in the KdV method if the total water depth is bigger than 500 meters. Thus, the idealization buoyancy frequency formula proposed by Vlasenko et al. (2005) or Xie et al. (2010) are used to modify the buoyancy frequency.
The internal wave in the Luzon Strait and the South China Sea are famous and deserves detailed study. We use the KdV method to find the parameters in the two fluid model to speed up the simulation of internal wave phenomena found in the satellite image.
Identifer | oai:union.ndltd.org:NSYSU/oai:NSYSU:etd-0825111-170545 |
Date | 25 August 2011 |
Creators | Wu, Chung-lin |
Contributors | Yiing-Jang Yang, Yu-Huai Wang, Guan-Yu Chen, Ruo-Shan Tseng |
Publisher | NSYSU |
Source Sets | NSYSU Electronic Thesis and Dissertation Archive |
Language | Cholon |
Detected Language | English |
Type | text |
Format | application/pdf |
Source | http://etd.lib.nsysu.edu.tw/ETD-db/ETD-search/view_etd?URN=etd-0825111-170545 |
Rights | unrestricted, Copyright information available at source archive |
Page generated in 0.0015 seconds