Return to search

Gene expression in healing tendon

Tendon injury is painful and often debilitating, and is a one of the most prevalent soft tissue injuries encountered in the clinic. While common, the underlying molecular and genetic processes of tendon damage and repair remain poorly understood. The work described herein used genome-wide expression analyses to investigate tendon injury and healing from three perspectives. The first identified novel gene expression in tendon fibroblasts following their stimulation with nitric oxide (NO). Of particular relevance to tendon healing was the observation that stimulated fibroblasts express a number of extracellular matrix (ECM) genes in response to NO in a dose-dependent manner, and that NO significantly affects cellular adhesion, a critical process during tendon repair. These findings will be of use when optimising dosages of NO delivery in future work investigating NO as potential treatment for tendon injuries. The second study examined gene expression in an acute tendon injury model in the rat at 1, 7, and 21 days post injury, roughly representing the inflammation, proliferation, and remodelling phase of wound repair. Several novel genes and pathways were found to be differentially expressed at each stage of healing. Of particular interest were the presence of a significant number of genes related to glutamate signaling, a method of cellular communication that has not previously been shown to exist in tendon. Also upregulated were a number of genes which have previously only been associated with embryonic development. Finally, gene expression in a supraspinatus tendinopathy model in the rat was investigated. Several genetic pathways were identified in tendinopathic tendons which have not previously been associated with the disease, and, analogous to the acute injury model study, glutamate signaling gene overexpression was also prevalent. Further in vitro studies showed that the expression of these genes in tendon fibroblasts were stimulated by glutamate treatment, which in turn upregulated pro-apoptotic pathways causing cell death. This may prove to be an important causative factor in the tendon degeneration seen in tendinopathy, in which apoptosis has been identified as playing a significant role. The results of these studies contribute to a better understanding of the aetiology of several extremely common pathologies of this soft tissue, and may help to develop more targeted therapies for increasing the efficacy of tendon healing in future.

Identiferoai:union.ndltd.org:ADTP/188134
Date January 2006
CreatorsMolloy, Timothy John, St George Clinical School, UNSW
PublisherAwarded by:University of New South Wales. St George Clinical School
Source SetsAustraliasian Digital Theses Program
LanguageEnglish
Detected LanguageEnglish
RightsCopyright Timothy John Molloy, http://unsworks.unsw.edu.au/copyright

Page generated in 0.002 seconds