In this thesis the development of light emitting diodes (LED) is reviewed. The emphasis is put on devices emitting at the blue region of the spectrum. The physical characteristics of these devices are considered. The main interest is based around the ability of blue LEDs to generate nanosecond range optical flashes. The fast pulsing electronic circuits capable of driving the devices are also reviewed. These are complemented by the potentially exploitable techniques that could provide further benefits for required fast optical pulse generation. The simple, compact and inexpensive electronic oscillator for producing nanosecond range pulses is developed. The circuitry is adapted for generation of pulses necessary to switch on and assist with the turn off of blue InGaN based LEDs. The resulting nanosecond range blue optical pulses are suitable for, but not limited to, the calibration of scintillation counters. These devices used in neutrino detection experiments could provide a better understanding of cosmology and particle physics.
Identifer | oai:union.ndltd.org:bl.uk/oai:ethos.bl.uk:537416 |
Date | January 2007 |
Creators | Veledar, Omar |
Contributors | Danaher, Sean |
Publisher | Northumbria University |
Source Sets | Ethos UK |
Detected Language | English |
Type | Electronic Thesis or Dissertation |
Source | http://nrl.northumbria.ac.uk/3826/ |
Page generated in 0.0019 seconds