Return to search

Non-equilibrium dynamics of many body quantum systems / Dynamique hors équilibre de systèmes quantiques à N-corps

Cette thèse porte sur l'étude de propriétés dynamiques de modèles quantiques portés hors équilibre. Nous introduisons en particulier des modèles généraux de type spin-boson, qui décrivent par exemple l'interaction lumière-matière ou certains phénomènes de dissipation. Nous contribuons au développement d'une approche stochastique exacte permettant de d'écrire la dynamique hors équilibre du spin dans ces modèles. Dans ce contexte, l'effet de l'environnement bosonique est pris en compte par l'intermédiaire des degrés de liberté stochastiques supplémentaires, dont les corrélations temporelles dépendent des propriétés spectrales de l'environnement bosonique. Nous appliquons cette approche à l'étude de phénomènes à N-corps, comme par exemple la transition de phase dissipative induite par un environnement bosonique de type ohmique. Des phénomènes de synchronisation spontanée, et de transition de phase topologique sont aussi identifiés. Des progrès sont aussi réalisés dans l'étude de la dynamique dans les réseaux de systèmes lumière-matière couplés. Ces développements théoriques sont motivés par les progrès expérimentaux récents, qui permettent d'envisager une étude approfondie de ces phénomènes. Cela inclut notamment les systèmes d'atomes ultra-froids, d'ions piégés, et les plateformes d'électrodynamique en cavité et en circuit. Nous intéressons aussi à la physique des systèmes hybrides comprenant des dispositifs à points quantiques mésoscopiques couplés à un résonateur électromagnétique. L'avènement de ces systèmes permet de mesures de la formation d'états à N-corps de type Kondo grâce au résonateur; et d'envisager des dispositifs thermoélectriques. / This thesis deals with the study of dynamical properties of out-of-equilibrium quantum systems. We introduce in particular a general class of Spin-Boson models, which describe for example light-matter interaction or dissipative phenomena. We contribute to the development of a stochastic approach to describe the spin dynamics in these models. In this context, the effect of the bosonic environment is encapsulated into additional stochastic degrees of freedom whose time-correlations are determined by spectral properties of the bosonic environment. We use this approach to study many-body phenomena such as the dissipative quantum phase transition induced by an ohmic bosonic environment. Synchronization phenomena as well as dissipative topological transitions are identified. We also progress in the study of arrays of interacting light-matter systems. These theoretical developments follow recent experimental achievements, which could ensure a quantitative study of these phenomena. This notably includes ultra-cold atoms, trapped ions and cavity and circuit electrodynamics setups. We also investigate hybrid systems comprising electronic quantum dots coupled to electromagnetic resonators, which enable us to provide a spectroscopic analysis of many-body phenomena linked to the Kondo effect. We also introducethermoelectric applications in these devices.

Identiferoai:union.ndltd.org:theses.fr/2016SACLX036
Date08 September 2016
CreatorsHenriet, Loïc
ContributorsUniversité Paris-Saclay (ComUE), Le Hur, Karyn
Source SetsDépôt national des thèses électroniques françaises
LanguageEnglish
Detected LanguageFrench
TypeElectronic Thesis or Dissertation, Text

Page generated in 0.0017 seconds