The notion of spaces of orderings was introduced by Murray Marshall in the 1970's and provides an abstract framework for studying orderings on fields and the reduced theory of quadratic forms over fields. The structure of a space of orderings (X, G) is completely determined by the group structure of G and the quaternary relation (a_1, a_2) = (a_3, a_4) on G -- the groups with additional structure arising in this way are called reduced special groups. The theory of reduced special groups, in turn, can be conveniently axiomatized in the first order language L_SG. Numerous important notions in this theory, such as isometry, isotropy, or being an element of a value set of a form, make an extensive use of, so called, positive primitive formulae in the language L_SG. Therefore, the following question, which can be viewed as a type of very general and highly abstract local-global principle, is of great importance:<p>Is it true that if a positive primitive formula holds in every finite subspace of a space of orderings, then it also holds in the whole space?<p>This problem is now known as the pp conjecture. The answer to this question is affirmative in many cases, although it has always seemed unlikely that the conjecture has a positive solution in general. In this thesis, we discuss, discovered by us, first counterexamples for which the pp conjecture fails. Namely, we classify spaces of orderings of function fields of rational conics with respect to the pp conjecture, and show for which of such spaces the conjecture fails, and then we disprove the pp conjecture for the space of orderings of the field R(x,y). Some other examples, which can be easily obtained from the developed theory, are also given. In addition, we provide a refinement of the result previously obtained by Vincent Astier and Markus Tressl, which shows that a pp formula fails on a finite subspace of a space of orderings, if and only if a certain family of formulae is verified.
Identifer | oai:union.ndltd.org:LACETR/oai:collectionscanada.gc.ca:SSU.etd-09172007-135219 |
Date | 18 September 2007 |
Creators | Gladki, Pawel |
Contributors | Marshall, Murray |
Publisher | University of Saskatchewan |
Source Sets | Library and Archives Canada ETDs Repository / Centre d'archives des thèses électroniques de Bibliothèque et Archives Canada |
Language | English |
Detected Language | English |
Type | text |
Format | application/pdf |
Source | http://library.usask.ca/theses/available/etd-09172007-135219/ |
Rights | unrestricted, I hereby certify that, if appropriate, I have obtained and attached hereto a written permission statement from the owner(s) of each third party copyrighted matter to be included in my thesis, dissertation, or project report, allowing distribution as specified below. I certify that the version I submitted is the same as that approved by my advisory committee. I hereby grant to University of Saskatchewan or its agents the non-exclusive license to archive and make accessible, under the conditions specified below, my thesis, dissertation, or project report in whole or in part in all forms of media, now or hereafter known. I retain all other ownership rights to the copyright of the thesis, dissertation or project report. I also retain the right to use in future works (such as articles or books) all or part of this thesis, dissertation, or project report. |
Page generated in 0.0023 seconds