The modulation methods Space Vector PWM (SVPWM), Discontinuous PWM (DPWM1, DPWMMAX) and six-step mode are investigated in the overmodulation range of a voltage-fed induction motor drive. This area enables an increase of inverter output voltage so that drive performance can be enhanced. Though, pulse dropping occurs which results in increased iron losses and current waveform quality
degradation. Due to differences in harmonic distortion the modulation methods cause various torque oscillations and power losses in induction motors and inverter drives. To quantify these effects in a squirrel cage induction motor drive a simulation model containing a finite element machine model and an analytic inverter model is developed, in order to find the PWM scheme offering maximum torque and minimal power losses. Additionally, the holistic investigation of machine and inverter losses allows for making statements concerning total losses of drive systems and the most suitable overmodulation scheme for the application.
Identifer | oai:union.ndltd.org:DRESDEN/oai:qucosa:de:qucosa:86851 |
Date | 15 August 2023 |
Creators | Mahlfeld, Hannes, Schuhmann, Thomas, Döbler, Ralf, Cebulski, Bernd |
Publisher | IEEE |
Source Sets | Hochschulschriftenserver (HSSS) der SLUB Dresden |
Language | English |
Detected Language | English |
Type | info:eu-repo/semantics/acceptedVersion, doc-type:conferenceObject, info:eu-repo/semantics/conferenceObject, doc-type:Text |
Rights | info:eu-repo/semantics/openAccess |
Relation | 10.1109/ICELMACH.2016.7732657 |
Page generated in 0.0021 seconds