The first step in the assembly of an overset grid system is to cut holes or to mark points that are inside a solid body and outside the domain of interest. Most existing approaches have been developed for use only with structured grids. A fast and robust approach that can be applied to structured, unstructured, or generalized grid topologies, with a minimum of user inputs, is desired. A new hole cutting process is presented that utilizes a Cartesian Binary tree representation of the geometry to provide a fast and efficient algorithm applicable to generalized grids. An algorithm has also been developed to mark the fringe points and find its donors. The effectiveness of the algorithm is demonstrated by testing it on generalized and structured grids.
Identifer | oai:union.ndltd.org:MSSTATE/oai:scholarsjunction.msstate.edu:td-1178 |
Date | 07 August 2004 |
Creators | Jagannathan, Sudharsun |
Publisher | Scholars Junction |
Source Sets | Mississippi State University |
Detected Language | English |
Type | text |
Format | application/pdf |
Source | Theses and Dissertations |
Page generated in 0.0071 seconds