This thesis deals with the ferroresonance phenomenon and ferroresonance overvoltage in electric networks. That’s why the introduction part explains the theoretical basis of ferroresonance and its consequences in the power system. The work then focuses on the power system as a non-linear dynamic system and describes various analytical methods for solving these systems. These methods are further applied to diagnose specific systems. There are a number of various power system configurations susceptible to ferroresonance. The most frequent one is theoretically analyzed in this thesis and a number of recommendations are offered for reducing the ferroresonance phenomenon. The thesis further deals with the selection of suitable software for this computationally chal-lenging task. A number of different tools are considered and efficiently reduced to Matlab Sim-ulink and PSCAD software. Matlab Simulink and its SimPowerSystem Toolbox are used to ana-lyze the effect of hysteresis of the magnetic core of the transformer on the emergence and course of the ferroresonance phenomenon. Using PSCAD, various configurations of the power systems are compared in terms of possible emergence and course of ferroresonance and also to find the limiting conditions that increase the probability of this phenomenon. The possibility of using arti-ficial neural networks for ferroresonance diagnosis is also mentioned in this thesis. The final part provides a number of recommendations for design and operation of both new and existing power systems.
Identifer | oai:union.ndltd.org:nusl.cz/oai:invenio.nusl.cz:233633 |
Date | January 2014 |
Creators | Bátora, Branislav |
Contributors | Eleschová,, Žaneta, Krejčí, Petr, Toman, Petr |
Publisher | Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií |
Source Sets | Czech ETDs |
Language | Czech |
Detected Language | English |
Type | info:eu-repo/semantics/doctoralThesis |
Rights | info:eu-repo/semantics/restrictedAccess |
Page generated in 0.002 seconds