The order of OH groups in the crystal structure of SbC2O4OH, a potential precursor in the synthesis of ternary oxides, was debated. Neutron diffraction on the deuteride SbC2O4OD revealed disordered OD groups with half occupation for deuterium atoms on either side of a mirror plane (SbC2O4OD at T = 298(1) K: Pnma, a = 582.07(3) pm, b = 1128.73(5) pm, c = 631.26(4) pm). O–H stretching frequencies are shifted by a factor of 1.35 from 3390 cm−1 in the hydride to 2513 cm−1 in the deuteride as seen in infrared spectra. SbC2O4OH suffers radiation damage in a synchrotron beam, which leaves a dark amorphous residue. Thermal decomposition at 564 K yields antimony oxide, carbon dioxide, carbon oxide, and water in an endothermic reaction. When using SbC2O4OH as a precursor in reactions, however, ternary oxides are only formed at much higher temperatures.
Identifer | oai:union.ndltd.org:DRESDEN/oai:qucosa:de:qucosa:84712 |
Date | 13 April 2023 |
Creators | Kohlmann, Holger, Rauchmaul, Anne, Keilholz, Simon, Franz, Alexandra |
Publisher | MDPI |
Source Sets | Hochschulschriftenserver (HSSS) der SLUB Dresden |
Language | English |
Detected Language | English |
Type | info:eu-repo/semantics/publishedVersion, doc-type:article, info:eu-repo/semantics/article, doc-type:Text |
Rights | info:eu-repo/semantics/openAccess |
Relation | 2304-6740, 21 |
Page generated in 0.0023 seconds