Oxidative stress is a feature of many chronic neurodegenerative diseases as well as a contributing factor in acute disorders including stroke. Fork head class of transcription factors (Foxos) play a key role in promoting oxidative stress-induced apoptosis in neurons through the upregulation of a number of pro-apoptotic genes. Here I demonstrate that synaptic NMDA receptor activity not only promotes Foxos nuclear exclusion but also suppresses the expression of Foxo1 in a PI3K-dependent fashion. I also found that Foxo1 is in fact, a Foxo target gene and that it is subject to a feed-forward inhibition by synaptic activity, which is thought to result in longerterm suppression of Foxo downstream gene expression than previously thought. The nuclear factor (erythroid 2-related) factor 2 (Nrf2) is another transcription factor involved in oxidative stress and the key regulator of many genes, whose products form important intrinsic antioxidant systems. In the CNS, artificial activation of Nrf2 in astrocytes has been shown to protect nearby neurons from oxidative insults. However, the extent to which Nrf2 in astrocytes could respond to endogenous signals such as mild oxidative stress is less clear. The data presented herein, demonstrate for the first time that endogenous Nrf2 could be activated by mild oxidative stress and that this activation is restricted to astrocytes. Contrary to the established dogma, I found that mild oxidative stress induces the astrocytic Nrf2 pathway in a manner distinct from the classical Keap1 antagonism employed by prototypical Nrf2 inducers. The mechanism was found to involve direct regulation of Nrf2's transactivation properties. Overall these results advance our knowledge of the molecular mechanism(s) associated with the control of endogenous antioxidant defences by physiological signals.
Identifer | oai:union.ndltd.org:bl.uk/oai:ethos.bl.uk:586432 |
Date | January 2013 |
Creators | Mubarak, Bashayer Rashed A. |
Contributors | Al-Mubarak, Bashayer; Hardingham, Giles; Skehel, Paul |
Publisher | University of Edinburgh |
Source Sets | Ethos UK |
Detected Language | English |
Type | Electronic Thesis or Dissertation |
Source | http://hdl.handle.net/1842/8057 |
Page generated in 0.0017 seconds