Return to search

Optimierung von Schizosaccharomyces pombe für die heterologe Genexpression

Die vorliegende Arbeit beschäftigt sich mit der genetischen Optimierung der Spalthefe S. pombe für die biotechnologische Produktion von Fremdproteinen. Hierbei werden vor allem zwei Aspekte näher untersucht, zum einen die Stabilität des zu produzierenden Proteins und zum anderen die Bildung von Disulfidbrücken. Von anderen Organismen ist bekannt, dass die N-terminale AS im Verbund mit einem Lysinrest ein Protein destabilisieren kann. Das Modellprotein vVEGF besitzt an Position 2 einen Lysinrest (K2) und damit ein Hauptmerkmal eines derartigen Destabilisierungselementes. Falls das Protein dem Ubiquitin-vermittelten Abbau unterliegt, ist es wahrscheinlich, dass K2 eine essenzielle Rolle für die Stabilität dieses Proteins spielt. Im Rahmen dieser Arbeit konnte gezeigt werden, dass K2 in S. cerevisiae destabilisierend wirkt, während es in S. pombe keinen destabilisierenden Effekt hat. Dieses Ergebnis spricht dafür, dass es Unterschiede im Ubiquitin-vermittelten Abbau von Proteinen in diesen beiden Hefen gibt. Der Schwerpunkt dieser Arbeit lag auf der Analyse und Optimierung der Bildung von Disulfidbrücken in S. pombe. Disulfidbrücken stellen eines der wichtigsten Elemente der korrekten Proteinfaltung dar und werden in Eukaryonten vorwiegend im oxidierenden Milieu des ER in das naszierende Protein eingeführt. Aus diesem Grunde wurden Proteindisulfid-isomerasen (PDIs) und ER-oxidoreduktin (Ero)-ähnliche Proteine, die die Schlüssel-komponenten der Bildung von Disulfidbrücken in Eukaryonten darstellen, näher untersucht. In S. pombe finden sich insgesamt drei PDI-Homologe (SpPdi1p, SpPdi2p und SpPdi3p) sowie zwei Ero-Homologe (SpEro1a p und SpEro1b p). Mit Ausnahme des nicht glycosylierten SpPdi2p, sind alle Proteine Membran-assoziierte glycosylierte Komponenten des ER. SpPdi2p und SpPdi3p sowie SpEro1a p und SpEro1b p liegen in vivo teilweise in oxidiertem Zustand vor. Des Weiteren konnte gezeigt werden, dass SpEro1b p, nicht jedoch SpEro1a p in der Lage ist, die temperatursensitive S. cerevisiae ero1-1-Mutante funktionell zu komplementieren. Interessanterweise ergab die Untersuchung konservierter Cysteine mittels gerichteter Mutagenese einerseits Unterschiede zwischen SpEro1a p und SpEro1b p sowie andererseits zwischen den S. pombe Ero-Proteinen und den Ero-Proteinen anderer Spezies. Im Gegensatz zu Ero1b p wird Ero1a p durch reduzierenden Stress und Hitzestress induziert. Dies deutet darauf hin, dass SpEro1b p für die Bildung von Disulfidbrücken unter normalen Wachstumsbedingungen nötig ist, während SpEro1a p vornehmlich bei der Adaption der Zellen an Stressbedingungen erforderlich ist. Abschließend konnte gezeigt werden, dass die gesteigerte Expression von SpEro1a p und SpEro1b p zu einer deutlich erhöhten Ausbeute des disulfidhaltigen heterologen Proteins Orf19p-HA führt. Dieser Befund impliziert, dass in S. pombe die Oxidation der Disulfidbrücken für die Faltung von Proteinen vermutlich limitierend ist.

Identiferoai:union.ndltd.org:DRESDEN/oai:qucosa:de:qucosa:24506
Date24 May 2005
CreatorsKettner, Karina
ContributorsRödel, Gerhard, Kohlwein, Sepp D., Schlapp, Tobias
PublisherTechnische Universität Dresden
Source SetsHochschulschriftenserver (HSSS) der SLUB Dresden
LanguageGerman
Detected LanguageGerman
Typedoc-type:doctoralThesis, info:eu-repo/semantics/doctoralThesis, doc-type:Text
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.0023 seconds