Abstract
HIF prolyl 4-hydroxylases (HIF-P4Hs) and HIF asparaginyl hydroxylase (FIH) are novel members of the 2-oxoglutarate dioxygenase family that play key roles in the regulation of the hypoxia-inducible transcription factor (HIF). They hydroxylate specific proline and asparagine residues in HIF-α, leading to its proteasomal degradation and inhibition of its transcriptional activity, respectively. These enzymes are inhibited in hypoxia, and as a consequence HIF-α becomes stabilized, forms a dimer with HIF-β, attains its maximal transcriptional activity and induces expression of many genes that are important for cell survival under hypoxic conditions.
The three HIF-P4Hs and FIH were expressed here as recombinant proteins in insect cells and purified to near homogeneity. All these enzymes were found to require long peptide substrates. The three HIF-P4Hs and FIH acted differently on the various potential hydroxylation sites in the HIF-α isoforms. The HIF-P4Hs acted well on sequences with cores distinctly different from the core motif -Leu-X-X-Leu-Ala-Pro-, suggested based on sequence analysis studies, the alanine being the only relatively strict requirement in addition to the proline itself. Acidic residues around the hydroxylation site also played a distinct role. These results together with those of others provide evidence that there is no conserved core motif for the hydroxylation by HIF-P4Hs.
The Km values of the HIF-P4Hs for O2 were slightly above its atmospheric concentration, while the Km of FIH was about one-third of these values but still 2.5 times that of the type I collagen P4H. The HIF-P4Hs are thus effective oxygen sensors, as even small decreases in the amount of O2 affect their activities, while a more severe decrease is required to inhibit FIH activity. Small molecule inhibitors of the collagen P4Hs also inhibited the HIF-P4Hs and FIH but with distinctly different Ki values, indicating that it should be possible to develop specific inhibitors for the HIF-P4Hs and FIH.
The HIF-P4Hs were found to bind the iron cosubstrate more tightly than FIH and the collagen P4Hs, and the chelator desferrioxamine was an ineffective inhibitor of the HIF-P4Hs in vitro. Several metals were effective competitive inhibitors of FIH but they were ineffective inhibitors of the HIF-P4Hs. The well-known stabilization of HIF-1α by cobalt and nickel is thus not due to a simple competitive inhibition of the HIF-P4Hs, and is probably at least in part due to HIF-P4H-independent mechanisms. The effective inhibition of FIH by these metals nevertheless indicates that the stabilized HIF-1α is transcriptionally fully active.
Identifer | oai:union.ndltd.org:oulo.fi/oai:oulu.fi:isbn951-42-7575-6 |
Date | 03 December 2004 |
Creators | Hirsilä, M. (Maija) |
Publisher | University of Oulu |
Source Sets | University of Oulu |
Language | English |
Detected Language | English |
Type | info:eu-repo/semantics/doctoralThesis, info:eu-repo/semantics/publishedVersion |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess, © University of Oulu, 2004 |
Relation | info:eu-repo/semantics/altIdentifier/pissn/0355-3221, info:eu-repo/semantics/altIdentifier/eissn/1796-2234 |
Page generated in 0.0017 seconds